检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备代码 本教程中用到的训练、推理代码如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 Ascend-vLLM版本 本方案支持vLLM的v0.6.3版本。 镜像版本 本方案中用到的基础镜像地址和配套版本关系如下表所示,请提前了解。
UTC'的毫秒数。 source_location String 模型所在的OBS路径。 source_job_id String 来源训练作业的ID。 source_job_version String 来源训练作业的版本。 source_type String 模型来源的类型。
成网络的输出结果是否真实。训练中获得的生成器网络可用于生成与输入图片相似的图片,用作新的数据集参与训练。基于Gan网络生成新的数据集不会生成相应的标签。图像生成过程不会改动原始数据,新生成的图片或xml文件保存在指定的输出路径下。 基于StyleGan2用于在数据集较小的情形下,
String 任务某个步骤的描述。 表4 EndpointsRes 参数 参数类型 描述 allowed_access_ips Array of strings 允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。
String 任务某个步骤的描述。 表5 EndpointsRes 参数 参数类型 描述 allowed_access_ips Array of strings 允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
编辑llm_train/AscendSpeed中的Dockerfile文件第一行镜像地址,修改为本文档中的基础镜像地址。 FROM {image_url} (选填)编辑llm_train/AscendSpeed中的Dockerfile文件,修改git命令,填写自己的git账户信息。 git config
String 任务某个步骤的描述。 表4 EndpointsRes 参数 参数类型 描述 allowed_access_ips Array of strings 允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。
Server上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.906版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 本文档中的模型运行环境是ModelArts
Step7 精度对比 由于NPU和GPU生成的随机数不一样,需要固定二者的随机数再进行精度对比。通常的做法是先用GPU单卡跑一遍训练,生成固定下来的随机数。然后NPU和GPU都用固定的随机数进行单机8卡训练,比较精度。 训练精度对齐。对齐前2000步的loss,观察loss在极小误差范围内。
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.907版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础上,使用新的数据集进行微调(fin
flavors Array of NotebookFlavor objects 支持切换的规格列表。 pages Integer 总的页数。 size Integer 每一页的数量。 total Long 总的记录数量。 表4 NotebookFlavor 参数 参数类型 描述 arch String
908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习率。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。 模型结构
甚至会有服务业务中断的风险,预测请求时延超过60s时,建议制作异步请求模式的模型。 自定义镜像的配置规范 镜像对外接口 设置镜像的对外服务接口,推理接口需与config.json文件中apis定义的url一致,当镜像启动时可以直接访问。下面是mnist镜像的访问示例,该镜像内含m
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督