检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
到最终答案,减少了过度简化或跳跃推理的可能性。 分步推理与反馈:通过分步推理,模型能够在每个步骤后检查和修正自己的思考过程。 例如,在给定一个复杂的逻辑推理问题时,可以要求模型每完成一小步推理,就提供中间结论和推理过程。这样,模型不仅能增加解题的准确性,还能增强理解和自我校正的能力。
其中,单个cls类别目录下的每个三级目录为一个样本,例如cls1文件的样本为aa和bb。 所有样本文件夹(如 aa)包含的图片数量相等,例如cls1样本aa和bb、cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“能力调测”,单击“文本对话”页签。 选择需要调用的服务。可从“预置服务”或“我的服务”中选择。 填写系统人设。如“你是一个AI助手”,若不填写,将使用系统默认人设。 在页面右侧配置参数,具体参数说明见表1。 表1 NLP大模型能力调测参数说明
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
使用小规模的特定任务数据:微调通常需要小规模但高质量的标注数据,直接与目标任务相关。通过这些数据,模型可以学习到任务特定的特征和模式。 在特定任务上具有更高的准确性:微调后的模型在具体任务中表现更优。相较于预训练阶段的通用能力,微调能使模型更好地解决细分任务的需求。 在一个客户服务问答系统中,
成应用创建。 图1 创建应用 步骤2:配置Prompt 创建应用后,需要撰写提示词(Prompt),为应用设定人设、能力、核心技能、执行步骤。 应用会根据盘古NLP大模型对提示词的理解,来响应用户问题。因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。
通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent
可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。 这里提供了一些微调参数的建议值和说明,供您参考: 表1 微调参数的建议和说明
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 配置OBS访问授权步骤如下: 登录ModelArts Studio大模型开发平台首页。 配置OBS访问授权。
在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 图1 提示词工程 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“横向比较”。 图2 横向比较 进入到横向比较
进入“标注作业”页签,单击当前标注任务的“标注”。 如果需要将该标注任务移交给其他人员,可以单击“移交”,并设置移交人员以及移交数量,单击“确定”。 进入标注页面后,逐一对数据进行标注。 如图1,以标注单轮问答数据为例,需要逐一确认问题(Q)及答案(A)是否正确,如果问题或答案不正确,可以对其进行二次编辑。
击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据标注”,单击页面右上角“创建标注任务”。 在“创建标注任务”页面选择需要标注的图片类数据集与标注项。 如果选择“图片Caption”标注项,则可开启“AI预标注”功能。AI预标注将自动生成标注内容,不会覆盖原始
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型压缩”,单击界面右上角“创建压缩任务”。 在“创建压缩任务”页面,选择需要压缩的基础模型,支持选择已发布模型或未发布模型。 选择压缩策略。除INT8压缩策略外,部分模型支持INT4压缩策略,可在选择模型后,根据页面展示的策略进行选择。
进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗”,单击界面右上角“创建清洗任务”。 在“创建清洗任务”页面,选择需要清洗的文本类数据集,单击“下一步”。 进入“清洗步骤编排”页面。对于文本类数据集,可选择的清洗算子请参见文本类清洗算子能力清单。 在左侧“添加算子”分页勾选所需算子。
进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗”,单击界面右上角“创建清洗任务”。 在“创建清洗任务”页面,选择需要清洗的视频类数据集,单击“下一步”。 进入“清洗步骤编排”页面。对于视频类数据集,可选择的清洗算子请参见表1。 在左侧“添加算子”分页勾选所需算子。
进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗”,单击界面右上角“创建清洗任务”。 在“创建清洗任务”页面,选择需要清洗的气象类数据集,单击“下一步”。 进入“清洗步骤编排”页面。对于气象类数据集,可选择的清洗算子请参见表1。 在左侧“添加算子”分页勾选所需算子。
训练数据一般可通过公开数据集获取,例如ERA5。ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。 ERA5数据下载官方指导:https://confluence.ecmwf.int/display/
使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者
在“格式配置”选择发布格式。由于数据工程需要支持对接盘古大模型,为了使这些数据集能够被这些大模型正常训练,平台支持发布不同格式的数据集。 当前支持默认格式、盘古格式: 默认格式:数据工程功能支持的原始格式。 盘古格式:使用盘古大模型训练时所需要使用的数据格式。 如果使用该数据集训练