检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
推理工具 |——AscendCloud-OPP #依赖算子包 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
的流量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 specification
TEST:指明该对象用于测试。 INFERENCE:指明该对象用于推理。 如果没有给出该字段,则使用者自行决定如何使用该对象。 id 否 此参数为系统导出的样本id,导入时可以不用填写。 annotation 否 如果不设置,则表示未标注对象。annotation值为一个对象列表,详细参数请参见表3。 inference-loc
TF-1.13.1-python3.6 TF-2.1.0-python3.6 PyTorch-1.4.0-python3.6 下文将介绍如何在训练中使用评估代码。对训练代码做一定的适配和修正,分为三个方面:添加输出目录、复制数据集到本地、映射数据集路径到OBS。 添加输出目录
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
执行的时长。 events 否 Array of strings 执行的事件。 labels 否 Array of strings 为执行记录设置的标签。 data_requirements 否 Array of DataRequirement objects 节点steps使用到的数据。
String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。 model_type 是 String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/S
修改msvd_eval.sh参数 修改scripts/video/eval/msvd_eval.sh中的参数 模型存放的地方,如果根据第2步的方式保存的模型,设置如下: CKPT="llama-vid/llama-vid-7b-full-224-video-fps-1" 调用openai的key,评
行模型的性能。 AKG的配置也是在模型转换阶段进行配置(即执行converter_lite命令时),通过指定对应的配置文件akg.cfg,设置对应的akg优化级别,并且在模型转换时参考样例进行对应的配置。 # akg.cfg [graph_kernel_param] opt_level=2
必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/w
单击“添加授权”。在“访问授权”页面,在“授权对象类型”下面选择“IAM子用户”,“授权对象”选择开发者的账号,“委托选择”选择“新增委托”,“委托名称”设置为“ma_agency_develop_user”,“权限配置”选择“自定义”,“权限名称”勾选“OBS Administrator”。开
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤六:预测分析 运行完成
务器页面。 图8 节点管理 单击“远程登录”,在弹出的窗口中,单击“CloudShell登录”。 图9 远程登录 在CloudShell中设置密码等参数后,单击“连接”即可登录节点,CloudShell介绍可参见远程登录Linux弹性云服务器(CloudShell方式)。 配置kubectl工具。
必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/w
是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤六:预测分析 运行完成
session 是 Object 会话对象,初始化方法请参考Session鉴权。 offset 否 Integer 查询作业的偏移量,最小为0。例如设置为1,则表示从第二条开始查。 limit 否 Integer 查询作业的限制量。最小为1,最大为50。 sort_by 否 String
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
with_execution_id 表示创建目录时是否拼接execution_id,默认为“False”。该字段只有在create_dir为True时才支持设置为True。 否 bool 使用示例如下: 实现InputStorage相同的能力 import modelarts.workflow as