检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调整Hive元数据超时 大分区表包含过多分区,导致任务超时,同时大量分区可能需要更多时间来加载与元存储缓存同步。因此,为了在更大规模存储中获得更好的性能,建议相应地调整加载元数据缓存最大超时时间和加载元数据连接池最大等待时间。 使用HetuEngine管理员用户登录FusionInsight
当HBase业务突然出现峰值,短时间内大量请求发送到一个RegionServer/HMaster时,超过其可接受的范围,就会造成过载。过载会导致应用侧读写性能下降,HBase服务侧频繁GC,严重时会导致服务实例重启等。 当前HBase具有防过载能力,可以实现拒绝超大请求、保护内部请求、记录不合理
length exceeds 2147483647: 2717729270 - discarded 例如,SparkSQL运行TPCDS 500G的测试时,使用默认配置出现错误。所以当数据量较大时需要适当的调整该参数。 配置参数 参数入口: 在Manager系统中,选择“集群 > 服务 >
Trie特性优化了HFile Block结构,开启后可以减少缓存空间的使用,降低缓存数据驱逐率,提升缓存命中率,适用于频繁读取数据的场景,优化了数据读取性能。 本章节内容仅适用于MRS 3.3.1及之后版本。 开启Succinct Trie后,HFile文件将不兼容开源版本,如果使用HFile进行数据迁移,且需要迁移到MRS
当集群数据量达到一定规模后,JVM的默认配置将无法满足集群的业务需求,轻则集群变慢,重则集群服务不可用。所以需要根据实际的业务情况进行合理的JVM参数配置,提高集群性能。 操作步骤 参数入口: HBase角色相关的JVM参数需要配置在安装有HBase服务的节点的“${BIGDATA_HOME}/Fusio
因而JobManager和TaskManager的参数配置对Flink应用的执行有着很大的影响意义。用户可通过如下操作对Flink集群性能做优化。 操作步骤 配置JobManager内存。 JobManager负责任务的调度,以及TaskManager、RM之间的消息通信。当
Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container GC日志,如果频繁出现Full GC,需要优化GC。 GC的配置:在客户端的“conf/flink-conf
0及以后版本。 Flink作业RocksDB介绍 当启用RocksDB作为作业的状态后端时,大量的状态数据会导致RocksDB的读写性能差。可通过如下方法排查算子性能是否受RocksDB影响: 在TaskManager页面的ThreadDump查看算子是否长时间执行在RocksDB的操作接
因而JobManager和TaskManager的参数配置对Flink应用的执行有着很大的影响意义。用户可通过如下操作对Flink集群性能做优化。 操作步骤 配置JobManager内存。 JobManager负责任务的调度,以及TaskManager、RM之间的消息通信。当
k块,对于随机读的情况,性能可能会比较差。 如果要提升写入的性能,一般扩大到128KB或者256KB,可以提升写数据的效率,也不会影响太大的随机读性能。单位:字节 65536 IN_MEMORY 配置这个表的数据优先缓存在内存中,这样可以有效提升读取的性能。对于一些小表,而且需要频繁进行读取操作的,可以设置此配置项。
k块,对于随机读的情况,性能可能会比较差。 如果要提升写入的性能,一般扩大到128KB或者256KB,可以提升写数据的效率,也不会影响太大的随机读性能。单位:字节 65536 IN_MEMORY 配置这个表的数据优先缓存在内存中,这样可以有效提升读取的性能。对于一些小表,而且需要频繁进行读取操作的,可以设置此配置项。
Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container GC日志,如果频繁出现Full GC,需要优化GC。 GC的配置:在客户端的“conf/flink-conf
sh /opt/executor/bin/shutdown.sh sh /opt/executor/bin/startup.sh 父主题: 性能优化类
使用JDBCServer执行TPC-DS测试套,默认参数配置下也报了很多错误:Executor Lost等。而当配置Driver内存为30g,executor核数为2,executor个数为125,executor内存为6g时,所有任务才执行成功。 父主题: Spark Core性能调优
INSERT写入优化 HetuEngine向Hive数据源分区表写入数据时,需要根据实际业务的查询结果中分区列数量添加相关自定义配置,以获得最佳的性能效果。 调整HetuEngine INSERT写入步骤 使用HetuEngine管理员用户登录FusionInsight Manager页面,选择“集群
SQL中支持基于行的哈希聚合算法,即使用快速聚合hashmap作为缓存,以提高聚合性能。hashmap替代了之前的ColumnarBatch支持,从而避免拥有聚合表的宽模式(大量key字段或value字段)时产生的性能问题。 操作步骤 要启动聚合算法优化,在Spark客户端的“spark-defaults
Yarn节点配置调优 操作场景 合理配置大数据集群的调度器后,还可通过调节每个节点的可用内存、CPU资源及本地磁盘的配置进行性能调优。 具体包括以下配置项: 可用内存 CPU虚拟核数 物理CPU使用百分比 内存和CPU资源的协调 本地磁盘 操作步骤 若您需要对参数配置进行调整,具体操作请参考修改集群服务配置参数。
在最后的count distinct结果中加1。如果还有其他计算,可以先将值为空的记录单独处理,再和其他计算结果合并。 父主题: Hive性能调优
Cache中读取小表内容直接与大表join得到结果并输出。 使用Map Join时需要注意小表不能过大,如果小表将内存基本用尽,会使整个系统性能下降甚至出现内存溢出的异常。 Sort Merge Bucket Map Join 使用Sort Merge Bucket Map Join必须满足以下2个条件:
SQL中支持基于行的哈希聚合算法,即使用快速聚合hashmap作为缓存,以提高聚合性能。hashmap替代了之前的ColumnarBatch支持,从而避免拥有聚合表的宽模式(大量key字段或value字段)时产生的性能问题。 操作步骤 要启动聚合算法优化,在Spark客户端的“spark-defaults