检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
“公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。 计算节点规格 请根据界面提示选择需要使用的规格。 计算节点个数 设
您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练图像分类模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。
“公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。 计算节点规格 界面上选择计算规格。 服务自动停止 设置服务自动停止
您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练热轧钢板表面缺陷检测模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。
选择数据 在使用通用实体抽取工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入在自然语言处理套件其他应用中已创建的文本数据集。 新建数据集 导入数据集 前提条件 已在自然语言处理套件控制台选择“
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二
上传模板图片 在使用多模板分类工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件
“公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。 计算节点规格 请根据界面提示选择需要使用的规格。 计算节点个数 设
选择数据 在使用通用文本分类工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入在自然语言处理套件其他应用中已创建的文本数据集。 新建数据集 导入数据集 前提条件 已在自然语言处理套件控制台选择“
标注数据 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 针对文本分类场景,是对文本的内容按照标签进行分类处理,标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 进入数据标注页面 在“
“日”/“” 在识别字段类型为出生日期的文字“2020年1月1日出生”时,首先不做预过滤,然后提取关键字符“2020年1月1日”,最后做后处理,最终提取内容为“2020.1.1”。 提取 对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。
“公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。 计算节点规格 如果资源池选择“公共资源池”,支持选择计算规格“CPU:2
上传模板图片 在使用单模板工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪张图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传某一格式的发票图片作为模板,训练的文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预训
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
发布数据集 ModelArts Pro在数据集管理过程中,针对同一个数据源,对不同时间标注后的数据,按版本进行区分,方便后续模型构建和开发过程中,选择对应的数据集版本进行使用。数据标注完成后,您可以将数据集当前状态进行发布,生成一个新的数据集版本。 关于数据集版本 针对刚创建的数
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预
得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并训练模型,详情请见训练模型。 整体评估
自定义字段类型 在应用开发过程中“框选识别区”时会选择“字段类型”,如您框选的文字内容是数字,可选择默认字段类型“数字”。 如果“默认字段类型”不能满足您的业务需求,您可以创建新的字段类型。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,详情请见新建应用。 操作步骤
选择数据 在使用多语种文本分类工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入在自然语言处理套件其他应用中已创建的文本数据集。 新建数据集 导入数据集 前提条件 已在自然语言处理套件控制台选择