检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 sample_id 是 String 样本ID。 workforce_task_id 是 String
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 high_score 否 String
lpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: 客户通过业务数据,在generate_dataset.py脚本,指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workforce_task_id 是 String 团队标注任务ID。 表2 Query参数
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 email 否 String 标注团队成员邮箱。
类型type、属性properties,必需属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured Text
录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格
录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格
类型type、属性properties,必需属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 若希望使用JSON Schema,guided_json的写法可参考outlines: Structured Text
类型type、属性properties,必需属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured Text
未安装,说明机器操作系统安装错误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本
录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格
录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格
其基模型。解决了对于部分原始LLM模型,找不到合适的投机模型的问题。 投机小模型训练端到端示例 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。
录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格
录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格
录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格
未安装,说明机器操作系统安装错误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本
的镜像,而不是选择一个PyTorch引擎和Cuda都不满足的镜像,如MindSpore+Cuda11.X,这样基础镜像就会很大,同样的操作最终目的镜像就很大。 此外下面举出几种常见的减少镜像大小的方式。 减少目的镜像层数 举例:假设需要安装两个pip包six,numpy,将安装放到同一层,而不是放到不同层:
未安装,说明机器操作系统安装错误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本