检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Some sources point out that Frank Rosenblatt developed and explored all of the basic ingredients of the deep learning systems of today
e和head之间的,是为了更好的利用backbone提取的特征。Bottleneck:瓶颈的意思,通常指的是网网络输入的数据维度和输出的维度不同,输出的维度比输入的小了许多,就像脖子一样,变细了。经常设置的参数 bottle_num=256,指的是网络输出的数据的维度是256 ,
想要得到的。因此,我们说输入层和中间层被紧密的连接起来了。值得注意的是神经网络给予了足够多的关于z和y的数据,给予了足够的训练样本有关c和y。神经网络非常擅长计算从c到g的精准映射函数。 这就是一个基础的神经网络。你可能发现你自己的神经网络在监督学习的环境下是如此的有效和强
7版本或其他版本的,根据自己的需要下载合适的安装包。下载链接:https://www.anaconda.com/download/#linux点击下面的64-Bit (x86) Installer (522 MB),下载64位的版本。下载完后的文件名是:Anaconda3-2020.02-Linux-x86_64
机器学习中的一个核心问题是设计不仅在训练数据上表现好,并且能在新输入上泛化好的算法。在机器学习中,许多策略显式地被设计为减少测试误差(可能会以增大训练误差为代价)。这些策略被统称为正则化。我们将在后文看到,深度学习工作者可以使用许多不同形式的正则化策略。事实上,开发更有效的正则化策
更确切的说,他们说明分段线性网络(可以通过整流非线性或 maxout 单元获得)可以表示区域的数量是网络深度的指数级的函数。图 6.5 解释了带有绝对值整流的网络是如何创建函数的镜像图像的,这些函数在某些隐藏单元的顶部计算,作用于隐藏单元的输入。每个隐藏单元指定在哪里折叠输入空
数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流
数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流
深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千
是统计学家和机器学习研究者使用很久的数据集。它是150 个鸢尾花卉植物不同部分测量结果的集合。每个单独的植物对应一个样本。每个样本的特征是该植物不同部分的测量结果:萼片长度,萼片宽度,花瓣长度和花瓣宽度。这个数据集记录了每个植物属于什么品种,其**有三个不同的品种。 无监督学习算法(unsupervised
降就是一个经典的例子。MLP(深度学习)是一个高度参数化的模型。对于等式y = mx + c,m和c被称为参数,我们从数据和中推导出参数的值。方程的参数可以看作自由度,线性回归具有相对较少的参数,即具有较小的自由度。然而,更复杂的MLP具有更多的参数,也具有更大的自由度。虽然两者
深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络的学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂的问题。深度强化学习比机器学习的其他分支要复杂得多
最有效的现代优化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。
权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现
络受视觉系统的结构启发而产生。第一个卷积神经网络计算模型是在Fukushima(D的神经认知机中提出的,基于神经元之间的局部连接和分层组织图像转换,将有相同参数的神经元应用于前一层神经网络的不同位置,得到一种平移不变神经网络结构形式。后来,Le Cun等人在该思想的基础上,用误差
深度学习框架有哪些?各有什么优势?
深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是和其他的参数模型例如线性模型的代价函数相同的。 在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使
),一个通用的,有效的框架,用于深度学习动态图表示为时间事件序列。由于内存模块和基于图的运算符的新组合,TGNs能够显著优于以前的方法,同时在计算效率上也更高。此外,我们还展示了之前几个用于学习动态图的模型可以转换为我们框架的具体实例。我们对框架的不同组件进行了详细的消歧研究,并
下:深度学习通常被描述为一个实验驱动的领域,并且不断被指责缺乏相应的理论基础。这个问题已被目前大量尚未整理好的文献部分地解决。本文回顾和整理了深度学习理论的最新进展。这些理论文献被分为六类:(1)分析深度学习泛化的复杂性和能力的方法;(2)用于建模随机梯度下降及其变量的随机微分方
深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20