已找到以下 10000 条记录

AI平台ModelArts

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
AI平台ModelArts
ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
  • 深度学习计算服务平台

    智能制造 视频应用 政府行业 算法模型 AI解决方案/集成服务

    开发者可利用平台数据集训练自己模型,或利用平台中算法框架定制出自己所需功能。平台核心功能主要包括样本库、算法库、模型库、训练平台与推理服务平台。其中样本库是存储和管理各类型样本资源组件,为训练环境提供标注样本,支撑模型训练;算法库是提供开箱可用神经网络算法仓库,模型库

    商家: 中科弘云科技(北京)有限公司 交付方式: License
    ¥40000.0/个

    开发者可利用平台数据集训练自己模型,或利用平台中算法框架定制出自己所需功能。平台核心功能主要包括样本库、算法库、模型库、训练平台与推理服务平台。其中样本库是存储和管理各类型样本资源组件,为训练环境提供标注样本,支撑模型训练;算法库是提供开箱可用神经网络算法仓库,模型库

    智能制造 视频应用 政府行业 算法模型 AI解决方案/集成服务
    ¥40000.0/个
  • 深度学习模型优化

    +智能,见未来 项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等。 岗位职责 负责调研深度学习模型优化技

  • 深度学习之“深度

    学,然而,虽然深度学习一些核心概念是从人们对大脑理解中汲取部分灵感而形成,但深度学习模型不是大脑模型。没有证据表明大脑学习机制与现代深度学习模型所使用相同。你可能会读到一些流行科学文章,宣称深度学习工作原理与大脑相似或者是根据大脑工作原理进行建模,但事实并非如此

    作者: ypr189
    1571
    1
  • 深度残差收缩网络:一种深度学习故障诊断算法

    png【翻译】如第一部分所述,作为一种潜在、能够从强噪声振动信号中学习判别性特征方法,本研究考虑了深度学习和软阈值化集成。相对应地,本部分注重于开发深度残差网络两个改进变种,即通道间共享阈值深度残差收缩网络、通道间不同阈值深度残差收缩网络。对相关理论背景和必要想法进行了详细介绍。A.

    作者: hw9826
    发表时间: 2020-08-31 11:54:08
    4310
    0
  • 人工智能应用测试深度解析:理论基础与实践应用指南

    人工智能应用测试深度解析:理论基础与实践应用指南 人工智能应用测试深度解析:理论基础与实践应用指南 本期直播主要结合理论及人工智能相关实验,给大家讲述AI应用测试主要流程和方法。帮助开发者了解AI应用测试理论及方法,和AI应用测试在模型迭代调优过程中作用。 本期直播主要结

  • 深度学习 - 深度学习 (人工神经网络研究概念)

    文章目录 深度学习 - 深度学习 (人工神经网络研究概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练自下上升非监督学习自顶向下监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 深度学习之深度模型中优化

    组专门为此设计优化技术。会介绍神经网络训练中这些优化技术。如果你不熟悉基于梯度优化基本原则,简要概述了一般数值优化。主要关注这一类特定优化问题:寻找神经网络上一组参数 θ,它能显著地降低代价函数 J(θ),该代价函数通常包括整个训练集上性能评估和额外正则化项。

    作者: 小强鼓掌
    338
    1
  • 深度学习之优化理论限制

    经网络单元输出光滑连续值,使得局部搜索求解优化可行。一些理论结果表明,存在某类问题是不可解,但很难判断一个特定问题是否属于该类。其他结果表明,寻找给定规模网络一个可行解是很困难,但在实际情况中,我们通过设置更多参数,使用更大网络,能轻松找到可接受解。此外,在神经网络

    作者: 小强鼓掌
    428
    2
  • 昇腾云服务ModelArts深度解析:理论基础与实践应用指南

    昇腾云服务ModelArts深度解析:理论基础与实践应用指南 昇腾云服务ModelArts深度解析:理论基础与实践应用指南 如何快速创建和部署模型,管理全周期AI工作流呢?本期直播聚焦华为昇腾云服务ModelArts一站式AI开发平台功能介绍,同时结合基于ModelArts 实践性实验,帮助

  • 深度学习

    度学习历史可以追溯到20世纪40年代。深度学习看似是一个全新领域,只不过因为在目前流行前几年它是相对冷门,同时也因为它被赋予了许多不同名称(其中大部分已经不再使用),最近才成为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员和不同观点影响。

    作者: QGS
    965
    4
  • AI平台ModelArts入门

    Notebook编程环境操作 了解详情 最佳实践 最佳实践 口罩检测(使用新版自动学习实现物体检测应用) 该案例是使用华为云一站式AI开发平台ModelArts新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中数据集资产,让零AI基础开发者完成“物体检测”AI模型的训练和部署。

  • 斯坦福DAWNBench深度学习训练及推理榜单:华为云ModelArts拿下双料冠军

    ai在AWS平台上训练速度快4倍;在推理性能方面,华为云ModelArts识别图片速度是排名第二厂商1.7倍,亚马逊4倍,谷歌9.1倍。 ModelArts:领先深度学习平台技术 作为人工智能最重要基础技术之一,近年来深度学习也逐步延伸到更多应用场景,如自动驾驶

  • AI系统创新Lab_News_【论文笔记】语音情感识别之手工特征深度学习方法

    mode效果最好。第三种跟第二种类似,只不过是重复第一帧值来pad,然后重复第二帧值来pad,直到最后一帧值,取时候也是从中间随机选择连续F帧。 对于长度大于F句子,掐头去尾保留连续F帧。 (7)数据集使用IEMOCAP,值得一提是这篇论文只是提出了新颖方法(triplet loss和cycle

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 - CodeArts IDE Online

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

  • AI平台ModelArts资源

    开发者计划 使能开发者基于开放能力进行技术创新 开发支持 专业高效开发者在线技术支持服务 开发者学堂 云上学习、实验、认证知识服务中心 开发者活动 开发者实训、热门活动专区 社区论坛 专家技术布道、开发者交流分享平台 文档下载 AI平台ModelArts文档下载 更多产品信息

  • 软件开发生产线CodeArts-资源页

    软件开发生产线 CodeArts 资源 是面向开发者提供一站式云端平台,即开即用,随时随地在云端交付软件全生命周期,覆盖需求下发、代码提交、代码检查、代码编译、验证、部署、发布,打通软件交付完整路径,提供软件研发流程端到端支持 是面向开发者提供一站式云端平台,即开即用,随时随地在云端交

  • 华为云hilens

    ModelBox中将所有的任务都以功能单元形式封装,由多个功能单元构成一个完整应用。执行时,功能单元计算将统一由线程池并发调度,确保计算单元被分配到对应异构硬件中执行。同时,计算中,数据和执行单元绑定,保证数据处理合理分配和高吞吐量。 预制应用编排异构计算组件 丰富组件覆盖了主流芯片、多

  • D-Plan AI 生态伙伴计划

    生态伙伴计划是围绕华为云一站式AI开发平台ModelArts推出一项合作伙伴计划,旨在与合作伙伴一起构建合作共赢AI生态体系,加速AI应用落地,华为云向伙伴提供培训、技术、营销和销售全面支持。 D-Plan AI 生态伙伴计划是围绕华为云一站式AI开发平台ModelArts推出一项合作伙伴计划,旨在与合作伙

  • 概要 - CodeArts IDE Online

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 准备工作 - CodeArts IDE Online

    Online实例,创建并打开一个空白工作目录,命令如下。 mkdir ai-test 使用pip安装TensorFlow等依赖包,为加快安装速度此处安装是tensorflow-cpu,命令如下。 1 2 python3 -m pip install tensorflow-cpu matplotlib