已找到以下 10000 条记录
  • 浅谈深度学习

    在成为越来越多领域主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型训练需要大量数据和计算资源,而且通常需要大量时间和人力来完成。此外,深度学习模型精度和稳定性也需要更多研究和改进。总结总之,深度学习技术是一种非常重要和有影响力机器学习技术。它已经

    作者: 运气男孩
    22
    3
  • 华为云,助力他们“深度用云”

    制。 面对这样考验,市面上很多云平台实现深度用云还需要时间验证。而对于有准备云平台,“深度用云”并不是一座难以逾越高山,而华为云Stack正属于这类有准备云平台。 华为云Stack是华为云面向大型政企客户云解决方案,也是华为云推进政企深度用云战略落地重要抓手。为帮助

  • 什么是深度学习

    何得到输出流程图中最长路径长度记为模型深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联深度而非计算图深度记为一种模型深度。值得注意是,后者用来计算表示计算图可能比概念图要深得多。鉴于这两种观点共存,一般在一个模型有多深才算作“深度”模型上并没

    作者: 角动量
    1546
    5
  • 深度学习前景

    为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员和不同观点影响。全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控

    作者: G-washington
    1663
    1
  • 浅谈深度学习

    首先要明白什么是深度学习?深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中“神经网络”

    作者: 运气男孩
    1268
    3
  • 深度学习概念

    Intelligence)。深度学习是学习样本数据内在规律和表示层次,这些学习过程中获得信息对诸如文字、图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语言和图像识别方面取得效果,远远超过先前

    作者: QGS
    973
    3
  • 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知

    华为云在此提醒您,产品退市后,深度学习服务不可用,为了避免影响您业务,建议您在2019/5/29 23:59:59前做好迁移数据及数据备份。 同时,华为云一站式AI开发平台ModelArts已经商用,ModelArts是深度学习服务新一代架构版本支持更多高级特性,不仅仅全部包含深度学习服务功能,还

  • PyTorch深度学习实战 | 深度学习框架(PyTorch)

    实地执行,所以当用户代码出现缺陷(bug)时候,可以通过这些信息轻松快捷地找到出错代码,不会让用户在调试(Debug)时候因为错误指向或者异步和不透明引擎浪费太多时间。 PyTorch代码相对于TensorFlow而言,更加简洁直观,同时对于TensorFlow高

    作者: TiAmoZhang
    发表时间: 2023-03-16 07:53:51
    749
    0
  • 深度学习挑战

    其擅长深度学习所需计算类型。在过去,这种水平硬件对于大多数组织来说成本费用太高。然而,基于云计算机器学习服务增长意味着组织可以在没有高昂前期基础设施成本情况下访问具有深度学习功能系统。 •数据挑战:深度学习也会受到妨碍其他大数据项目的数据质量和数据治理挑战阻碍。用

    作者: 建赟
    1652
    2
  • 分布式理论学习二:CAP定理

    没有扣除金额,为了保证数据一致性,只能抛弃订单系统可用性,直接将此次请求返回失败 在一些需要保证数据一致性分布式系统中,将无法保证服务可用性 (CAP定理) AP AP是指在分布式系统中,保证服务可用性,抛弃一定数据强一致性 例如在非数据强一致性场景(废话) 分布式文章系统

    作者: 仙士可
    发表时间: 2023-06-26 17:13:04
    18
    0
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关基本知识,其中包括深度学习发展历程、深度学习神经 网络部件、深度学习神经网络不同类型以及深度学习工程中常见问题。

  • 浅谈深度学习

    习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习思想:深度神经网络基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层高层次特征来表示数据抽象语义信息,获得更好特征鲁棒性。深度学习应用图像处理领域主要应用图像分类(物体识别):整幅图像分类或识别物

    作者: QGS
    38
    2
  • 深度学习简介

    是以有监督学习为基础卷积神经网络结合自编码神经网络进行无监督预训练,进而利用鉴别信息微调网络参数形成卷积深度置信网络。与传统学习方法相比,深度学习方法预设了更多模型参数,因此模型训练难度更大,根据统计学习一般规律知道,模型参数越多,需要参与训练数据量也越大。 20世

    作者: 某地瓜
    1680
    1
  • 深度学习概念

    这些学习过程中获得信息对诸如文字,图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语音和图像识别方面取得效果,远远超过先前相关技术。 深度学习在搜索技术,数据挖掘,机器

    作者: 某地瓜
    1858
    1
  • 认识深度学习

    在接受计算机视觉培训深度学习系统可能会首先学会识别出现在图像中物体边缘。这些信息被传送到下一层,可能会学习识别角落或其他特征。它一遍又一遍地经历同样过程,直到系统最终开发识别物体甚至识别人脸能力。 大多数深度学习系统都依赖于称为深度神经网络(DNN)一种计算机体系结构。

    作者: 建赟
    1845
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展核心技术,云服务则是深度学习主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力一站式平台软件。OMAI平台以支持高性能计算技术和大规模分

    作者: OMAI
    6640
    0
  • 深度学习笔记之度量模型深度方式(二)

           另一种是在深度概率模型中使用方法,它不是将计算图深度视为模型深度,而是将描述概念彼此如何关联深度视为模型深度。在这种情况下,计算每个概念表示计算流程图深度 可能比概念本身图更深。这是因为系统对较简单概念理解在给出更复杂概念信息后可以进一步精细化。

    作者: 小强鼓掌
    628
    2
  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    1523
    2
  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    657
    1
  • 深度用云先锋对话直播间

    客户从业务上云迈向深度用云,释放数字生产力。 了解更多 政企深度用云沙龙 华为云Stack面向政企数字化转型先行者搭建罗马广场,联接行业最活跃思想,分享经验、探索方向。 了解更多 华为云Stack专业服务 提供建云、上云、用云、管云全生命周期服务,连接华为云Stack云服务与客户业务价值的桥梁。