检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
GPU A系列裸金属服务器无法获取显卡如何解决 问题现象 在A系列裸金属服务器上使用PyTorch一段时间后,出现获取显卡失败的现象,报错如下: > torch.cuda.is_available() /usr/local/lib/python3.8/dist-packages/torch/cuda/__init__
PP:流水线并行将模型的不同层放置到不同的计算设备,降低单个计算设备的显存消耗,从而实现超大规模模型训练。流水线并行也叫层间并行,层输入输出的依赖性使得设备需要等待前一步的输出,通过batch进一步切分成微batch, 网络层在多个设备上的特殊安排和巧妙的前向后向计算调度,可以最
project_id 物理专属池的用户的project id。 gpu_uuid GPU的UUID。 gpu_index 节点上GPU的索引。 gpu_type 节点上GPU的型号。 device_name 网络设备或磁盘设备的名称。 port IB网卡的端口号。 physical_state
企业客户提供的一个高阶功能,用于进一步将用户的资源划分在多个逻辑隔离的空间中,并支持以空间维度进行访问的权限限定。 在开通工作空间后,系统会默认为您创建一个“default”空间,您之前所创建的所有资源,均在该空间下。当您创建新的工作空间之后,相当于您拥有了一个新的“ModelA
本文旨在指导客户将已有的推理业务迁移到昇腾设备上运行(单机单卡、单机多卡),并获得更好的推理性能收益。 ModelArts针对上述使用场景,在给出系统化推理业务昇腾迁移方案的基础上,提供了即开即用的云上集成开发环境,包含迁移所需要的算力资源和工具链,以及具体的Notebook代码运行示例和最
精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,对比相同模型在迭代前后版本的API计算数值,进行问题定位。
韧性特指安全韧性,即云服务受攻击后的韧性,不含可靠性、可用性。本章主要阐述ModelArts服务受入侵的检测响应能力、防抖动的能力、域名合理使用、内容安全检测等能力。 安全防护套件覆盖和使用堡垒机,增强入侵检测和防御能力 ModelArts服务部署主机层、应用层、网络层和数据层的安全防护套件。及时
--device=/dev/davinci7 //npu卡设备 --device=/dev/davinci_manager //davinci相关的设备管理的设备 --device=/dev/devmm_svm //管理设备 --device=/dev/hisi_hdc //管理设备 -v /usr/local
ModelArts控制台为什么能看到创建失败被删除的专属资源池? 在控制台页面操作删除专属资源池后,后端服务需要进行资源实例释放。在资源实例释放过程中,用户依然可以查询到资源池。如果需要创建专属资源池,建议等待5min后再创建,且不要使用已创建过的专属资源池名称来命名新建的专属资源池。
号可访问当授权类型为INTERNAL时需要指定可访问的子账号的账号名,可选择多个。 每个账号每个IAM项目都会分配1个默认工作空间,默认工作空间的访问控制为PUBLIC。 通过工作空间的访问控制能力,可限制仅允许部分人访问对应的工作空间。通过此功能可实现类似如下场景: 教育场景:
rt_rcv_data) res=$(($y-$x)) echo $res 上述获取的值*4/300 ,即为当前网卡的接收速率,单位Byte/s。 方法2:使用ib_write_bw测试RDMA的读写处理确定带宽 服务器A:服务端从mlx4_0网卡接收数据 ib_write_bw
限分配、访问控制等功能,可以帮助您安全的控制云服务资源的访问。如果华为账号已经能满足您的要求,不需要通过IAM对用户进行权限管理,您可以跳过本章节,不影响您使用ModelArts服务的其他功能。 IAM是提供权限管理的基础服务,无需付费即可使用,您只需要为您账号中的资源进行付费。
用户自身用户组的授权策略的授权范围,如果配置不当就会出现用户越权的问题。 为了控制委托授权的越权风险,ModelArts服务的权限管理功能要求只有租户管理员才能为用户配置委托,由管理员保证委托授权的安全性。 委托授权的最小化 管理员在配置委托授权时,应严格控制授权的范围。 Mod
内容审核 深入业务场景,提供完备成熟的内容审核/CV场景快速昇腾迁移的方案,高效解决业务内容审核的算力/国产化需求,助力企业业务稳健发展。 政府 提高公共服务的效率和质量,加强公共安全,优化政策方案和决策过程等。 金融 为金融机构带来更加高效、智能、精准的服务。 矿山 提供端到端AI生
Standard 面向AI开发者的一站式开发平台, 提供了简洁易用的管理控制台,包含自动学习、数据管理、开发环境、模型训练、模型管理、部署上线等端到端的AI开发工具链,实现AI全流程生命周期管理。 面向有AI开发平台诉求的用户。 ModelArts MaaS 提供端到端的大模型生产工具链和昇
在ModelArts控制台查看监控指标 在总览页查看ModelArts监控指标 在ModelArts控制台的总览页,支持查看生产概况(即总体作业运行数量)、资源占用情况、训练作业资源利用情况。您可以单击生产概况的链接、资源池名称、训练作业,跳转到对应界面查看更多详情。 图1 总览页查看监控信息
GPU训练业务迁移至昇腾的通用指导 训练业务迁移到昇腾设备场景介绍 训练迁移快速入门案例 PyTorch迁移精度调优 PyTorch迁移性能调优 训练网络迁移总结 父主题: GPU业务迁移至昇腾训练推理
构建条件节点控制分支执行 功能介绍 主要用于执行流程的条件分支选择,可以简单的进行数值比较来控制执行流程,也可以根据节点输出的metric相关信息决定后续的执行流程。主要应用场景如下: 可以用于需要根据不同的输入值来决定后续执行流程的场景。例如:需要根据训练节点输出的精度信息来决
部署到端、边、云的各种设备上和各种场景上,并且还为个人开发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。 支持各种部署场景,既能部署为云端的在线推理服务和批量推理任务,也能部署到端,边等各种设备。
配置节点参数控制分支执行 功能介绍 支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过