检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
配置开场白和推荐问题 配置开场白和推荐问题的步骤如下: 在“高级配置 > 开场白和推荐问题”中,可输入自定义开场白,也可单击“智能添加”。 在推荐问中单击“添加”,可增加推荐问数量。添加后可在右侧“预览调试”中查看相应效果。 最多可以添加3个推荐问。 图1 预览调试查看开场白与推荐问效果
Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。 针对“零码”开发者(无代码开发经验),平台提供
业大模型和能力集。 ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练、模型部署于一体的综合平台,专为开发和应用大模型而设计,旨在为开发者提供简单、高效的大模型开发和部署方式。平台配备数据工程、模型开发、应用开发三大工具链,帮助开发者充分利用
NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模
过对信息的分层分析和展示,为开发者提供了AI应用在不同层级的运行情况指导和操作,提升观测和调试效率。通过Insight提供了Agent的运行和观测能力。创建并运行Agent后,可通过单击Insight查看该Agent的执行信息。当前仅支持对知识性应用进行观测和调试。 前提条件 已成功创建应用。
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
提示词工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用
单击“确定”,完成参数配置。 连接提问器组件和其他组件。 配置插件组件 插件组件使开发者可以在工作流中实现与外部环境的交互,以拥有更强大的能力,完成更复杂的任务。开发者可以通过托拉拽方式将插件库中插件构建一个插件组件。 自定义插件:平台支持开发者创建自定义插件。支持开发者将工具、Function或
数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工
创建工作流时,工作流默认包含了开始、结束和大模型组件,每个组件需要配置不同的参数,如组件配置、输入和输出参数等。基于该工作流,开发者可通过拖、拉、拽可视化组件等方式添加更多的组件,实现复杂业务流程的编排,从而快速构建Agent。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。
Studio大模型开发平台为开发者提供了一种简单、高效的开发和部署大模型的方式。平台提供了包括数据处理、模型训练、模型部署、Agent开发等功能,以帮助开发者充分利用盘古大模型的功能。企业可以根据自己的需求选取合适的大模型相关服务和产品,方便地构建自己的模型和应用。 数据工程工具链
的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。 除了短视频风格的口播文案,营销文案还
于Snt9B3,支持1个训练单元训练及1个推理单元部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古科学计算大模型支持的具体操作:
失、浪费和管理不善的情况?在社会建设专项资金的使用情况中,应规范操作,加强管理,及时纠正和化解建设过程中的解释、调取和留置问题,严防管理漏洞,保证应用资金的安全性和真实性。同时,应建立完善的监管机制,严格管理,加强监督,加强专项资金使用情况的评估,加强对建设过程的监管和评估,节约
Studio大模型开发平台为用户提供了多种规格的NLP大模型,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古NLP大模型规格 模型支持区域 模型名称 可处理最大Token长度
应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交
进行清洗、转换、提取和过滤等操作,以确保数据符合模型训练的标准和业务需求。 通过这一过程,用户能够优化数据质量,去除噪声和冗余信息,提升数据的准确性和一致性,为后续的模型训练提供更高质量、更有效的输入。数据加工不仅仅是对数据的简单处理,它还针对不同数据类型和业务场景进行有针对性的优化。
盘古大模型分为模型订阅服务、训练服务和推理服务三个收费项。 模型订阅服务按照订阅时长计费,提供3个月与1年两种周期供客户选择,自支付完成开始计费。 数据智算服务、数据通算服务、数据托管服务按服务的单元数量和时长计费,时长精确到秒。 模型训练服务按服务的单元数量和时长计费,时长精确到秒。 模