检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 前提条件 已创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts Pro在同一区域,详情请见创建OBS桶。 已在ModelArts Pro控制台选择“HiLens
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并已执行到“数据标注”步骤确认标注结果,详情请见自动标注数据。 训练模型 在“模型训练”页面,单击“训练”。 模型训练一般需要运行一段时间
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型交并比和误差变化。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并已执行完“数据标注”步骤,详情请见标注数据。 训练模型 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”填写
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预训练模型
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“云状识别工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预训练模型
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在ModelArts
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业AI
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。往往不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择