检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Stable Diffusion模型迁移到Ascend上进行推理:介绍如何将Stable Diffusion模型通过MSLite进行转换后,迁移在昇腾设备上运行。 图7 Stable Diffusion模型迁移到Ascend上进行推理 父主题: GPU推理业务迁移至昇腾的通用指导
聚类是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 与分类不同,聚类分析数据对象,而不考虑已知的类标号(一般训练数据中不提供类
使用其中的“networks/merge_lora.py”把lora模型合入unet和text-encoder模型。 数据类型不匹配问题如何处理? 报错“data type not equal”时,按照堆栈信息,将对应的行数的数据类型修改为匹配的类型。 图1 报错信息 处理该问题时,pipeline_onnx_s
的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增量训练节约了重新训练中需要消耗大量算力、时间以及经济成本。 增量训练特别适用于以下情况: 数据流更新:在实际应用中,数据可能会持
创建AI应用不同方式的场景介绍 AI开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。 ModelArts的AI应用可导入所有训练生成的元模型、上传至对象存储服务(OBS)中的元
NodeCondition Type 分类 子类 异常中文描述 检测方法 处理建议 NT_NPU_DEVICE NPU 其他 npu dcmi device异常。 NPU设备异常,昇腾dcmi接口中返回设备存在重要或紧急告警。 可能是亚健康,建议先重启节点,若重启节点后未恢复,发起维修流程。
设置python路径的环境变量)。 测试训练启动脚本。 优先使用手工进行数据复制的工作并验证 一般在镜像里不包含训练所用的数据和代码,所以在启动镜像以后需要手工把需要的文件复制进去。建议数据、代码和中间数据都放到"/cache"目录,防止正式运行时磁盘占满。建议linux服务器申
数字字符组成。 训练数据:训练数据列数一致,总数据量不少于100条不同数据(有一个特征取值不同,即视为不同数据)。训练数据列内容不能有时间戳格式(如:yy-mm-dd、yyyy-mm-dd等)的数据。确保指定标签列的取值至少有两个且无数据缺失,除标签列外数据集中至少还应包含两个有
tch_YLLsize过大导致内存溢出。 提升数据读取的效率:如果读取一个batch数据的时间要长于GPU/NPU计算一个batch的时间,就有可能出现GPU/NPU利用率上下浮动的情况。建议优化数据读取和数据增强的性能,例如将数据读取并行化,或者使用NVIDIA Data Loading
训练作业ID。获取方法请参见查询训练作业列表。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 返回的数据条目数。 offset 否 Integer 数据条目偏移量。 请求参数 无 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 total Integer
下载或读取文件报错,提示超时、无剩余空间 复制数据至容器中空间不足 Tensorflow多节点作业下载数据到/cache显示No space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device” OOM导致训练作业失败
input. 原因分析 出现该问题的可能原因如下: 数据输入不连续,cuDNN不支持的类型。 处理方法 禁用cuDNN,在训练前加入如下代码。 torch.backends.cudnn.enabled = False 将输入数据转换成contiguous。 images = images
您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。 ModelArts通过对DB的数据进行备份,保证在原数据被破坏或损坏的情况下可以恢复业务。 开发环境故障恢复 针对用户创建
统一管理一个工作流中的所有存储路径,主要分为以下两个功能: 输入目录管理:开发者在编辑开发工作流时可以对所有数据的存储路径做统一管理,规定用户按照自己的目录规划来存放数据,而存储的根目录可以根据用户自己的需求自行配置。该方式只做目录的编排,不会自动创建新的目录。 输出目录管理:开
该指标用于统计每秒从磁盘读出的数据量。只考虑被容器使用的数据盘。 千字节/秒(Kilobytes/Second) ≥0 磁盘写入速率 ma_node_disk_write_rate_kilobytes_seconds 该指标用于统计每秒写入磁盘的数据量。只考虑被容器使用的数据盘。 千字节/秒(Kilobytes/Second)
导入AI应用后部署服务,提示磁盘不足 问题现象 用户在导入AI应用后,部署服务时,提示磁盘空间不足:“No space left on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker
为了便于用户快速进行迁移调优,降低调优门槛,ModelArts提供了MA-Adivisor性能自动诊断工具,用户采集性能profiling数据后,可通过该工具自动扫描profiling数据,工具分析完数据后会给出可能的性能问题点及调优建议,用户可以根据调优建议做相应的修改适配。目前该工具对CV类模型给出的调优建
accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM, AutoTokenizer
accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM, AutoTokenizer
failed] 原因分析 出现该问题的可能原因如下: 数据读入的速度跟不上模型迭代的速度。 处理方法 减少预处理shuffle操作。 dataset = dataset.shuffle(buffer_size=x) 关闭数据预处理开关,可能会影响性能。 NPURunConfig(