检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
新版镜像修改了默认的HOME目录,由“/home/work”变为“/home/ma-user”,请注意识别训练代码中是否有“/home/work”的硬编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。
下面是mnist镜像的访问示例,该镜像内含mnist数据集训练的模型,可以识别手写数字。其中listen_ip为容器IP,您可以通过启动自定义镜像,在容器中获取容器IP。
智能标注后,确认难例 “智能标注”任务执行过程中,ModelArts将自动识别难例,并完成标注。当智能标注结束后,难例标注结果将呈现在“待确认”页签,建议您对难例数据进行人工修正,然后确认标注。
cd /home/ma-user/infer/model/1 ll 图4 查看镜像文件复制成功 模型包文件样例 模型包文件model.zip中需要用户自己准备模型文件,此处仅是举例示意说明,以一个手写数字识别模型为例。
如果您使用专属资源池创建训练作业,容错检查识别的故障节点会被剔除。系统自动补充健康的计算节点至专属资源池。(该功能即将上线) 容错检查详细介绍请参考: 开启容错检查 检测项目与执行条件 触发容错环境检测达到的效果 环境预检查通过后,如果发生硬件故障会导致用户业务中断。
自动迁移工具使用指导 训练业务代码适配昇腾PyTorch代码适配 PyTorch Analyse 迁移分析工具,可以使用工具扫描用户的训练脚本,识别出源码中不支持的torch API和cuda API信息。 包含在cann toolkit中。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
单击将连接重命名,可以自定义一个便于识别的名字,单击OK。 配置完成后,单击Test Connection测试连通性。 选择Yes,显示Successfully connected表示网络可以连通,单击OK。 在最下方再单击OK保存配置。
文件类的预测代码和返回结果样例,可参见花卉识别样例。此样例是使用订阅算法训练的元模型,其输入类型为ModelArts官方定义,不可更改,如需自定义的元模型,请参见手写数字识别样例。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
在创建的模型部署服务成功后,进行预测时,会自动识别预测类型。 创建模型时不填写apis。在创建的模型部署服务成功后,进行预测,需选择“请求类型”。“请求类型”可选择“application/json”或“multipart/form-data”。请根据元模型,选择合适的类型。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形框。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测) 图3 启动智能标注(预标注) 完成参数设置后,单击“提交”,即可启动智能标注。
难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。