检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么情况下会被识别为难例? 难例是指难以识别的样本,目前只有图像分类和检测支持难例。 父主题: Standard数据管理
ModelArts AI识别可以单独针对一个标签识别吗? 标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: 一般性问题
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。
使用AI Gallery的订阅算法实现花卉识别 本案例以“ResNet_v1_50”算法、花卉识别数据集为例,指导如何从AI Gallery下载数据集和订阅算法,然后使用算法创建训练模型,将所得的模型部署为在线服务。
本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常见超市商品(包括蔬菜、水果和饮品),并给出置信度最高的5类商品的置信度得分。
本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常见超市商品(包括蔬菜、水果和饮品),并给出置信度最高的5类商品的置信度得分。
资产识别与管理 资产识别 用户在AI Gallery中的资产包括用户发布的AI资产以及用户提供的一些个人信息。 AI资产包括但不限于文本、图形、数据、文章、照片、图像、插图、代码、AI算法、AI模型等。 用户的个人信息包括: 用户注册时提供的昵称、头像、邮箱。
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。
标注多个标签,是否可针对一个标签进行识别? 数据标注时若标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。
简单的说就是识别一张图中是否是某类/状态/场景,适合图中主体相对单一的场景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。
表5 第三方案例列表 分类 文章名称 作者 Standard自动学习 2步打通ModelArts和Astro实现AI应用落地 胡琦 Standard开发环境 想不想让一张静态的照片动起来 林欣 基于TensorFlow训练轻量化ssdlite_mbv2人脸手机检测模型 AI练习生
当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障。 表1 隔离码 隔离码 分类 子类 异常中文描述 检测方法 A050101 GPU 显存 GPU ECC错误。
当前对AICPU算子识别到的调优方式主要包含两种: PyTorch数据类型转换,将执行在AICPU上的类型算子转换为执行在AICORE单元的算子。 等价的算子替换。 类型转换方式 当前PyTorch支持的dtype类型如下,详见Link。
为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展示,同时能配置通知及时提醒用户作业卡死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。
图1 训练故障识别 ModelArts Standard会对部分常见训练错误给出分析建议,目前还不能识别所有错误,提供的失败可能原因仅供参考。针对分布式作业,只会显示当前节点的一个分析结果,作业的失败需要综合各个节点的失败原因做一个综合判断。
具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL推理。
具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL Finetune训练。
当发生节点异常时,在故障初步分析阶段,您可先按表1识别是否为亚健康并自助进行处理,如果不是,则为故障,请联系客户经理发起维修流程(如果无客户经理可提交工单)。
自动诊断工具可以有效减少人工分析profiling的耗时,降低性能调优的门槛,帮助客户快速识别性能瓶颈点并完成性能优化。推荐用户在采集profiling分析后使用自动诊断工具进行初步性能调优。更进一步的性能调优再使用Ascend-Insight工具进行数据可视化并人工分析瓶颈点。