检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当发生节点异常时,在故障初步分析阶段,您可先按表1识别是否为亚健康并自助进行处理,若不是,则为故障,请联系客户经理发起维修流程(若无客户经理可提交工单)。
图1 训练故障识别 ModelArts Standard会对部分常见训练错误给出分析建议,目前还不能识别所有错误,提供的失败可能原因仅供参考。针对分布式作业,只会显示当前节点的一个分析结果,作业的失败需要综合各个节点的失败原因做一个综合判断。
具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL Finetune训练。
为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展示,同时能配置通知及时提醒用户作业卡死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。
为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展示,同时能配置通知及时提醒用户作业卡死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。
人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾分类,让您不用编写代码也可以实现生活垃圾分类。 本案例只适用于新版自动学习功能。
人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾分类,让您不用编写代码也可以实现生活垃圾分类。 本案例只适用于新版自动学习功能。
识别产生按需计费的原因,并重新选择正确的资源包或保证账户中的余额充足。 未购买资源包,在按需计费模式下账户的余额不足。 欠费影响 包年/包月 对于包年/包月专属资源池,用户已经预先支付了资源费用,因此在账户出现欠费的情况下,已有的包年/包月专属资源池仍可正常使用。
检查依赖包路径是否能被识别 代码如果在本地运行,需要将“project_dir”加入到PYTHONPATH或者将整个“project_dir”安装到“site-package”中才能运行。
图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,请参见“快速入门>使用自动学习构建模型”。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
+Ascend) 使用ModelArts Standard一键完成商超商品识别模型部署 专属资源池训练
如何查看账号ID和IAM用户ID ModelArts AI识别可以单独针对一个标签识别吗? ModelArts如何通过标签实现资源分组管理 为什么资源充足还是在排队? 规格中数字分别代表什么含义? 如何删除预置镜像中不需要的工具
Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练任务
图2 添加AppCode 单击使用ModelArts Standard一键完成商超商品识别模型部署案例中创建的在线服务名称,进入在线服务详情页,单击“修改”,进入修改在线服务页面。
如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。
安全 责任共担 资产识别与管理 身份认证与访问控制 数据保护技术 审计与日志 服务韧性 监控安全风险 故障恢复 更新管理 认证证书 安全边界
当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
图3 模型评估报告 表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。
表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。