检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何在ModelArts的Notebook中配置Conda源? 用户可以在Notebook开发环境中自行安装开发依赖包,方便使用。常见的依赖安装支持pip和Conda,pip源已经配置好,可以直接使用安装,Conda源需要多一步配置。 本章节介绍如何在Notebook开发环境中配置Conda源。
资产识别与管理 资产识别 用户在AI Gallery中的资产包括用户发布的AI资产以及用户提供的一些个人信息。 AI资产包括但不限于文本、图形、数据、文章、照片、图像、插图、代码、AI算法、AI模型等。 用户的个人信息包括: 用户注册时提供的昵称、头像、邮箱。 用户参加实践时提供的姓名、手机号、邮箱。
_wirte_check_passed = True df = pd.read_csv(ff, **param) 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直
管理Lite Cluster节点池 为帮助您更好地管理Kubernetes集群内的节点,ModelArts支持通过节点池来管理节点。一个节点池包含一个节点或多个节点,能通过节点池批量配置一组节点。 在资源池详情页,单击“节点池管理”页签,您可以创建、更新和删除节点池。 图1 节点池管理
Standard支持用户构建自定义镜像用于模型训练。 自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置框架无法满足需求,否则不推荐使用。自定义镜像需上传至容器镜像服务(SWR),才能用于ModelArts Standard上训练。 自定义镜像的启动命令规范 用户遵循M
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/J
创建Workflow节点 创建Workflow数据集节点 创建Workflow数据集标注节点 创建Workflow数据集导入节点 创建Workflow数据集版本发布节点 创建Workflow训练作业节点 创建Workflow模型注册节点 创建Workflow服务部署节点 父主题:
ckpoint继续训练。 当需要从训练中断的位置接续训练,只需要加载checkpoint,并用checkpoint信息初始化训练状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。 ModelArts Standard中如何实现断点续训练
训练作业重调度 当训练作业发生故障恢复时(例如进程级恢复、POD级重调度、JOB级重调度等),作业详情页面中会出现“故障恢复详情”页签,里面记录了训练作业的启停情况。 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。
(可选)本地安装ma-cli 使用场景 本文以Windows系统为例,介绍如何在Windows环境中安装ma-cli。 Step1:安装ModelArts SDK 参考本地安装ModelArts SDK完成SDK的安装。 Step2:下载ma-cli 下载ma-cli软件包。 完成软件包签名校验。
从AI Gallery订阅模型 在AI Gallery中,支持订阅官方发布或者他人分享的模型,订阅后的模型,可推送至ModelArts模型管理中,进行统一管理。 订阅模型与云服务订阅模型的区别: 在管理控制台,模型管理所在位置不同。订阅模型统一管理在“模型管理>订阅模型”页面中,
预检失败&硬件正常 场景三:环境预检测成功并进入用户业务阶段,硬件检测出现故障并且用户业务非正常退出,系统隔离所有故障节点并重新下发训练作业。 图3 业务失败&硬件故障 场景四:环境预检测成功并进入用户业务阶段,硬件无故障,当用户业务异常时系统以失败状态结束作业。 图4 业务失败&硬件正常
表示,以占位符的形式实现用户数据运行时配置的能力,当前支持的数据类型包括:int、str、bool、float、Enum、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通过Placeholder的形式透出,支持设置默认值,供用户修改配置使用。 属性总览(Placeholder)
等类型。对于布尔类型,建议用户在训练脚本中使用action='store_true'的形式来解析。 framework_type:必选参数,训练作业使用的AI框架类型,可参考步骤5的返回结果。 train_instance_type:必选参数,训练实例类型,这里指定’local’即为本地训练。
project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 service_id 否 String 服务ID,在创建服务时即可在返回体中获取,也可通过查询服务列表接口获取当前用户拥有的服务,其中service
来一定的环境搭建和维护成本。因此使用本地IDE+远程Notebook结合的方式,可以同时享受IDE工程化开发和云上资源的即开即用,优势互补,满足开发者需求。 VS Code在Python项目开发中提供了优秀的代码编辑、调试、远程连接和同步能力,在开发者中广受欢迎。本文以Ascend
cluster_id String MRS集群ID。可登录MRS控制台查看。 cluster_mode String MRS集群运行模式。可选值如下: 0:普通集群 1:安全集群 cluster_name String MRS集群名称。可登录MRS控制台查看。 database_name
etions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Notebook
etions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Notebook