检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程
团队标注使用说明 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能仅在以下Region支持:华北-北京四、华北-北京一、华东-上海一、华南-广州
Code端的实例目录和云上目录不匹配。 原因分析 实例连接错误,可能是配置文件写的不规范导致连接到别的实例。 解决方案 检查用户.ssh配置文件(路径一般在“C:\Users\{User}\.ssh\config”下),检查每组配置文件是否规范:Host必须放在每组配置的第一行,作为每组配置的唯一ID。
下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。 图1 精度诊断流程 一般情况下,onnx模型推理的结果可以认为是标杆数据,单独替换某个onnx模型为MindSpore Lite模型,运行得到的结果再与标杆数据做
U)环境和昇腾环境上运行训练时的差异点来判断问题所在,主要包括精度预检、精度比对和梯度监控等功能。更多内容请参考msprobe工具介绍。 一般场景的训练模型都是包括随机种子、数据集Shuffle、网络结构Dropout等操作的,目的是在网络阶段引入一定的随机性使得训练结果更加具有
format error”。 这种报错一般是因为所用镜像系统引擎和构建镜像的系统引擎不一致引起的,例如使用的是x86的镜像却标记的是arm的系统架构。 可以通过查看模型详情看到配置的系统运行架构。基础镜像的系统架构详情可以参考推理基础镜像列表。 父主题: 模型管理
<密钥相对路径> -p <端口> ma-user@<域名/ip> SSH可用时跳过3继续远端排查。 SSH不可用,排查3。 在VS Code Terminal里执行如下检查网络。如果网络异常,请执行命令检查端口。 curl -kv telnet://<域名/ip>:<port> 端口有问题,请联系技术支持。
创建Notebook失败,查看事件显示JupyterProcessKilled。 图1 查看事件 原因分析 出现此故障是因为Jupyter进程被清理掉了,一般情况Notebook会自动重启的,如果没有自动重启,创建一直失败,请确认是否是自定义镜像的问题。 解决方案 排查是否是自定义镜像的问题。
越大。一般适用于计算资源需求量长期稳定的成熟业务。 按需计费:一种后付费模式,即先使用再付费,按照ModelArts计算资源的实际使用时长计费,秒级计费,按小时结算。按需计费模式允许您根据实际业务需求灵活地调整资源使用,无需提前预置资源,从而降低预置过多或不足的风险。一般适用于资源需求波动的场景,可以即开即停。
离线训练安装包准备说明 在华为公有云平台,申请的资源一般要求连通网络。因此用户在准备环境时可以运行 scripts/install.sh 直接下载安装资源,或通过 Dockerfile 下载安装资源并构建一个新的镜像。 若用户的机器或资源池无法连通网络,并无法git clone下
请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载失败的风险。 训练作业创建完成后,ModelArts会将代码目录及其子目录下载至训练后台容器中。 例如:OBS路径“obs://obs-bucket/training-test
当训练数据集的数据未标注或者需要进一步的数据预处理,可以先将数据导入ModelArts数据管理模块进行数据预处理。在创建训练作业时,训练的输入参数位置可以选择数据管理模块的数据集。 创建调试训练作业 调试训练作业 模型训练前,一般会先对代码进行调试,ModelArts提供多种方式创建调试训练作业。
如何保证自定义镜像能不因为超过35G而保存失败? 可以从如下几方面考虑: 请选择较小的基础镜像创建Notebook实例,这样在实例中可操作的空间才会大,可自由安装的包才能更多,一般建议原始的启动Notebook的基础镜像在SWR侧查看大小不要超过6G。 镜像保存主要保存在/home/ma-user路径下除挂载路径/h
离线训练安装包准备说明 申请的模型软件包一般依赖连通网络的环境。若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载
容,这部分配置尽量稳定减少变化。 裸机上的开发形式建议开发者启动独立的Docker容器作为个人开发环境。Snt9b的裸机包含8卡算力资源,一般来说多人可以共用这个裸机完成开发与调测工作。多人使用为了避免冲突,建议各自在自己的docker容器中进行独立开发,并提前规划好每个人使用的具体卡号,避免相互影响。
服务状态一直处于“部署中” 问题现象 服务状态一直处于“部署中”,查看模型日志未发现服务有明显错误。 原因分析 一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。
如何切分ModelArts数据集? 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集比例
剪枝 什么是剪枝 剪枝是一种大模型压缩技术的关键技术,旨在保持推理精度的基础上,减少模型的复杂度和计算需求,以便大模型推理加速。 剪枝的一般步骤是:1、对原始模型调用不同算法进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。
像构建自定义镜像,具体请参见使用ModelArts的基础镜像构建新的训练镜像。 如镜像来源于第三方,设法找到自定义镜像的制作者咨询,制作者一般对镜像如何使用更加了解。 确定自定义镜像大小 自定义镜像的大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的一半。镜像过大会直接影响训练作业的启动时间。
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换