已找到以下 91 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 导入近线数据源 - 推荐系统 RES

    通过SDK导入通道中存储的用户画像实时数据。详情参见上传实时数据。在“用户画像实时导入”右侧,单击打开按钮,在弹出的对话框中进行确认。 物品画像实时导入 通过SDK导通道中存储的物品画像实时数据。在“物品画像实时导入”右侧,单击打开按钮,在弹出的对话框中进行确认。 行为数据实时导入 通过SDK导入通道中存储的

  • 更新智能场景内容 - 推荐系统 RES

    行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization

  • 查询在线服务详情 - 推荐系统 RES

    行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization

  • 修改在线服务参数 - 推荐系统 RES

    行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization

  • 创建智能场景 - 推荐系统 RES

    行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization

  • 应用场景 - 推荐系统 RES

    应用场景 推荐系统支持深度智能挖掘用户和物品的关联关系,将对应场景的推荐结果推送给用户,代替低纬度的人工规则,提升了相关运营指标和用户的体验。包含了互联网信息流,短视频/直播/音乐/阅读,广电媒资,社交,电商等场景。 RES+电商应用场景 场景描述 电商场景中,通常涉及首页推荐、

  • 什么是推荐系统 - 推荐系统 RES

    槛。 近线处理能力 支持实时数据的接入和更新、模型在线学习,近线处理实时训练兴趣模型。 全面的推荐实体 支持以用户推荐物品、以用户推荐用户、以物品推荐物品、以物品推荐用户四种全面的推荐对象,用户根据场景选择不同的推荐实体。 独立的排序模块 独立的基于CTR预估的排序打分模块,支持个性化排序能力。

  • 预测接口(排序) - 推荐系统 RES

    用户ID content 是 List 请参见表4,推荐物品的内容。 表4 content参数说明 参数名称 是否必选 参数类型 说明 score 是 Float 物品打分值,值越高推荐越靠前。 item 是 JSON 请参见表5,推荐物品。 表5 item参数说明 参数名称 是否必选 参数类型

  • 数据探索 - 推荐系统 RES

    种标签的分布情况。 图3 分布统计 物品报表:根据不同数据格式展示物品数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。 行为报表:行为报表展示各种行为类型以及该数据中此行为出现的次数。 画像查询:可以查询指定的用户或物品画像信息,包括静态和动态。 父主题: 数据质量管理

  • 更新自定义场景内容 - 推荐系统 RES

    SpecsConfig object 计算规格。 type 是 String 场景类型: UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 service_type 是 String 服务类型: rank,排序服务 rec,推荐服务 表4

  • 查询训练作业 - 推荐系统 RES

    行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization

  • 智能场景(猜你喜欢) - 推荐系统 RES

    选择离线计算、实时计算、排序模型训练规格和在线并发数。 个性化配置 匹配特征对 匹配用户和物品特征,以便于筛选出该用户相关联的物品进行推荐。 用户特征名:从下拉框中选择目标用户特征用于和物品特征进行匹配。 物品特征名:从下拉框中选择目标物品特征用于匹配用户特征,更好的做出推荐。 权重:取值为0.01-1。

  • 创建自定义场景 - 推荐系统 RES

    SpecsConfig object 计算规格。 type 是 String 场景类型: UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 service_type 是 String 服务类型: rank,排序服务 rec,推荐服务 表5

  • 提交组合作业 - 推荐系统 RES

    collect:用户收藏了某个物品 uncollect:用户取消收藏某个物品 search_click:用户点击搜索结果中的物品 comment:用户对物品的评论 share: 分享 like:点赞 dislike:点衰 grade:评分 consume:消费 use:观看视频/听音乐/阅读 interval

  • 效果评估 - 推荐系统 RES

    用户操作行为表:初始数据中的用户操作行为表。 “通用格式” 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 数据时间范围 被统计数据的起始时间和终止时间。

  • 查询数据源任务结果 - 推荐系统 RES

    Double 用户齐全度,一条行为中的用户是否在产生这条行为的时候拥有画像。 item_complete_degree Double 物品齐全度,一条行为中的物品是否在这条行为产生的时候拥有画像。 bhv_count Map<String,Integer> 行为次数统计。 user_long_feature_report

  • 基本概念 - 推荐系统 RES

    户。 物品 被推荐的内容,一般是指业务系统提供的给其用户的商品。例如,某视频网站的视频。 召回策略 召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、 特征过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。

  • 提交效果评估任务 - 推荐系统 RES

    behavior_type 是 String 行为类型 。 view:物品曝光 click:用户点击物品 collect:用户收藏了某个物品 uncollect:用户取消收藏某个物品 search_click:用户点击搜索结果中的物品 comment:用户对物品的评论 share: 分享 like:点赞 dislike:点衰

  • 创建离线数据源 - 推荐系统 RES

    对话框中,选择数据存储的OBS桶及其文件或文件夹。 如果选取文件夹,该文件夹下面的数据格式需保持一致,避免数据干扰。 物品属性表 从OBS桶中选择数据。在“物品属性表”右侧,单击,从弹出的对话框中,选择数据存储的OBS桶及其文件或文件夹。 如果选取文件夹,该文件夹下面的数据格式需保持一致,避免数据干扰。

  • 排序策略-离线特征工程 - 推荐系统 RES

    “不离散”:(默认)不做归一化,不对数据做处理。 待提取物品特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的物品特征,未选择的物品特征将不会被处理,即排序模块将忽略这些特征。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击,增加物品特征。在下拉选项中勾选特征参数