检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
避免物品重复推荐(曝光过滤) 本实践介绍用户在客户端浏览、点击过的某些商品,在规定的时间内,重复请求推荐接口,不会被再次推荐。 功能说明 该功能使用涉及两部分:实时行为数据的接入和在线服务配置行为过滤。当数据源部分开启近线行为实时接入之后,并且用户通过上传实时行为数据,系统才具备
配置物品status状态,完成物品的上下架 在推荐系统中,有一种常见的场景,最终推荐列表是否展示无库存或者已下架商品。针对此场景,RES系统在物品表中提供status字段来实现物品的上下架。 参考准备离线数据源中的物品表字段介绍,status置为0,代表该物品可被推荐。statu
灵活配置物品状态和过期时间,保障有效性和实效性 配置物品status状态,完成物品的上下架 配置过期时间实现新闻的过期下架
初始用户画像-物品画像-标准宽表生成 初始用户画像-物品画像-标准宽表生成,是将初始格式数据(离线数据)处理成用户画像、物品画像以及内部通用格式数据。 表1 初始用户画像-物品画像-标准宽表生成参数说明 参数名称 说明 数据源 数据在OBS的存放路径。包括用户属性表、物品属性表、用户操作行为表。
短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 热门推荐主要应用于当前用户浏览最多的物品内容,如实时搜索量前几的新闻或者物品。 前提条件 已经存在创建成功并完成数据探索的数据源。
同的行为记录会进行去重。“pv”的意思是同样行为记录不会去重。 “用户分群”:数据源类型包括用户特征和物品特征,根据数据源筛选数据, 选出需要的属性。只能选择进行用户分组还是物品分组,分组内可配置多个特征。默认关闭。 “最大推荐数结果数”:指定召回的结果数量。 “开启时间跨度”:
最大次数:某用户对某物品产生某行为的最大次数。 系统默认行为类型包括: view:物品曝光 click:用户点击物品 collect:用户收藏了某个物品 uncollect:用户取消收藏某个物品 search_click:用户点击搜索结果中的物品 comment:用户对物品的评论 share:分享
关联推荐的主要应用场景是什么? 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 父主题: 智能场景
ble的RS单元数量提升性能。 - 基于物品数据更新物品画像 基于物品数据更新物品画像可持续更新物品画像,更新频率可达秒级。以DIS中的实时物品日志为数据源,持续更新或添加物品画像数据,使物品画像处于最新的状态。 表4 基于物品数据更新物品画像参数说明 参数名称 说明 默认值 策略别名
排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
本实践针对用户的单次推荐预测请求,在返回的物品列表中,对规定的属性进行打散,避免推荐结果出现同一属性物品扎堆出现的现象。 本实践的基本流程如下: 准备工作 创建数据源 配置在线服务参数 获取推荐结果 准备工作 已注册华为云帐号,并且账号为可用状态。 确保用户选择的属性在物品表存在相应的字段属性,若不存在,统一按照默认(不打散)处理。
效期内实现可推送,超过有效期,不会被推送。 表1 物品数据中expireTime字段描述 字段名 类型 描述 是否必选 expireTime Long 失效时间,采用UTC标准时间,单位以秒计。当前服务器的时间大于该时间时,此物品将不会被推荐。如不设置,代表永不失效。 否 同时,
小。 单击可以删除对应行的行为权重。 物品曝光;1.0 物品最近邻域数 在ItemCF算法中使用,指定某个物品的若干个最近邻物品,构成该物品近邻集合。 50 相似性度量方式 计算用户或物品特征表达相似性的方式。在ItemCF算法中,每个物品会基于对它有过行为的用户表示为特征向量,向量每一维是一个<user_id
例如,通过用户匹配物品生成给用户推荐物品的候选集,物品自匹配生成给物品推荐物品的候选集。可选: 用户匹配物品 物品自匹配 匹配特征对 用户和物品相关联特征。请根据实际情况配置参数,如果属性匹配特征对相似度较高内存不够时需提升配置。 用户特征名:字符串,长度1-20。 物品特征名:字符串,长度1-20。
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到的用户数据和物品数据整合成一条数据。 画像:画像分为用户画像和物品画像,分别用于存储用户输入的用户特征和物品特征。如果同一用户或物品有多条记录,将会按照用户ID或者物品ID去重。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。
说明 作业ID(job_id) 是 String 作业的ID。离线策略特征工程-初始用户画像-物品画像-标准宽表算子、近线策略基于用户数据更新用户画像算子、近线策略基于物品数据更新物品画像算子可以作为此处的作业ID。 新的全局特征配置文件路径(new_global_features_info)
是商品的id(itemId)的值。 是 actionType String 行为类型: 物品曝光 用户点击物品 用户收藏了某个物品 用户取消收藏某个物品 用户点击搜索结果中的物品 用户对物品的评论 分享 点赞 点衰 评分 消费 观看视频/听音乐/阅读 是 actionMeasure
behavior_type 是 String 行为类型。 view:物品曝光 click:用户点击物品 collect:用户收藏了某个物品 uncollect:用户取消收藏某个物品 search_click:用户点击搜索结果中的物品 comment:用户对物品的评论 share: 分享 like:点赞 dislike:点衰