检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
业务面API构造请求 本节介绍GES业务面REST API请求的组成。 请求URI 图引擎服务业务面API请求URI由如下部分组成。 {URI-scheme} :// {SERVER_URL} / {resource-path} ? {query-string} 尽管请求URI包含在请求消息头中
升级图 由于GES软件版本不断升级,旧版本的图可以通过“升级”操作升级为新版本的图。 当前仅支持 1.0.3 以上版本的图的升级功能。 具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏,选择“图管理”。 在图管理列表中,选择需升级的图,在“操作”列选择“更多”>“升级”。
导出图 可将图数据导出至自定义的OBS目录下。 内存版的图支持 1.0.3 以上版本的图数据导出。 持久化版的图支持2.3.14及以上版本的图数据导出。 具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏,选择“图管理”。 在图管理列表中,选择需导出的图,在“操作”列选择“
单点环路检测(Single Vertex Circles Detection) 概述 单点环路检测(Single-Vertex-Circles-Detection)是一个经典的图问题,意在寻找图中的环路。环路上的点较好地体现了该点的重要性。 适用场景 单点环路检测适用于交通运输、金融风控等场景
共同邻居算法(Common Neighbors) 概述 共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景
费用账单 您可以在“费用中心 > 账单管理”查看资源的费用账单,以了解该资源在某个时间段的使用量和计费信息。 账单上报周期 包年/包月计费模式的资源完成支付后,会实时上报一条账单到计费系统进行结算。 按需计费模式的资源按照固定周期上报使用量到计费系统进行结算。按需计费模式产品根据使用量类型的不同
删除图 如果已完成图数据的分析,您可以删除图以释放资源。 删除图,默认不保留图备份,相关备份也会被删除,数据无法恢复,请谨慎操作。 删除图的具体操作步骤如下: 登录图引擎服务管理控制台。 在左侧导航栏,选择“图管理”。 在图管理列表中,选择需删除的图,在“操作”列选择“更多”>“删除
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core
清空数据 当导入了不需要的数据或者导入数据量过大,超过图规模时,可清空数据。 或通过Gremlin命令或Cypher命令误删除了数据,但不确定误删的数据有哪些,可以清空数据后重新导入。 清空数据操作将删除图所有的点、边数据,请谨慎操作。 清空数据的具体操作步骤如下: 登录图引擎服务管理控制台
Pregel编程接口 用户在实现UserPregelAlgorithm中的方法init和compute时主要依赖于PregelContext对象,该对象提供如下API: 表1 PregelContext API 方法和属性 描述 说明 ext_id(nid)->int 获取当前点的用户自定义外部
点集全最短路(All Shortest Paths of Vertex Sets) 概述 点集全最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的所有最短路径。 适用场景 点集最短路算法可应用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系的分析
使用HyG算法分析图 GES服务为您提供了丰富的基础图算法、图分析算法和图指标算法,您可以使用图算法做关系分析等。 前提条件 前端创建持久化版图时,选择开启HyG计算引擎。 图1 HyG计算引擎 操作步骤 创建HyG图。 发送“POST /ges/v1.0/{project_id}
套餐包管理 GES服务提供套餐包管理功能,用户可以快速跳转到购买、管理套餐包或者续费管理页面,了解当前套餐包的使用情况。 操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏,选择“套餐包”。 图1 套餐包管理 如您需要购买套餐包,单击“购买套餐包”,页面会跳转到购买套餐包页面,
点集共同邻居(Common Neighbors of Vertex Sets) 概述 点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友
动态拓展 指定某个起始节点id,结合消息传递时间递增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述章节时间轴设置中已经设置完成
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
算法参考 算法一览表 PageRank算法 PersonalRank算法 k核算法(k-core) k跳算法(k-hop) 最短路径算法(Shortest Path) 全最短路算法(All Shortest Paths) 带一般过滤条件最短路径(Filtered Shortest
TopicRank算法 概述 TopicRank算法12345热线多维度话题排序算法之一。 适用场景 适用于政务12345热线投诉话题排序。 参数说明 表1 TopicRank参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 是 节点的ID,支持多点输入,csv
业务面任务中心 业务面任务中心功能,可以查看图当前正在运行和历史上运行过的异步任务的详情。 具体操作步骤如下: 在左侧导航栏中选择“图管理”,单击图管理操作列中的“更多 > 任务中心”,进入“任务中心”页面。 图1 任务中心 2.2.23及以上版本的图可以使用该功能。 当图的运行状态显示为运行中
导出备份到OBS 为了实现GES跨Region数据迁移,您可以选择将备份文件导出到OBS。 持久化的图暂不支持该功能。 只有2.3.16及以上版本的内存版的图支持该功能,低版本的图需要您先进行升级图操作,升级到最新版本再进行导出。 您需要先在“图管理”页面对图进行成功备份,让图出现在