检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询处理任务详情 功能介绍 查询处理任务详情,支持查询“特征分析”任务和“数据处理”两大类任务。可通过指定路径参数“task_id”来查询某个具体任务的详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
接重启Notebook实例。重启后多种配置重置,会导致用户数据丢弃,环境丢失,造成很不好的使用体验。因此需要提供cache盘使用情况的监控和告警,并将数据上报至AOM平台。 配置流程 填写告警基本信息 设置告警规则 监控对象指标配置 告警触发条件设置 告警通知设置 创建主题、设置主题策略、订阅主题
TEXT Training job framework version. --workspace-id TEXT The workspace where you submit training job(default "0") --policy
使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化
使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化
使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化
次数、LOSS和吞吐数据按照“迭代次数|loss|吞吐”格式记录在日志中,AI Gallery通过环境变量找到日志,从中获取实际数据绘制成“吞吐”和“训练LOSS”曲线,呈现在训练的“指标效果”中。具体请参见查看训练效果。 说明: 日志文件中的迭代次数、LOSS和吞吐数据必须按照
odelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数和训练输出路径参数。这四种输入搭建了用户代码和ModelArts Standard后台交互的桥梁。 代码目录路径 您需要在OBS桶中指定代码目录,并将训练代码、依赖
报、确认为XX的图片、其他。用户可以根据分组结果,快速剔除掉不想要的,或者将某一类直接全选后添加标签。 目前只有“图像分类”、“物体检测”和“图像分割”类型的数据集支持自动分组功能。 启动自动分组任务 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备>数据标注”,进入“数据标注”管理页面。
将签名信息添加到消息头,从而通过身份认证。 AK(Access Key ID):访问密钥ID。与私有访问密钥关联的唯一标识符;访问密钥ID和私有访问密钥一起使用,对请求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。
Notebook中安装依赖包并保存镜像 在后续训练步骤中,训练作业启动命令中包含sh scripts/install.sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 通过运行install.sh脚本,会git clone下载Megatron-LM、M
ions 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 is_personal_cluster 否 Boolean 是否查询专属资源池
Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 每一页的数量,默认不限制。 offset 否 Integer
logs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 service_id 是 String 服务ID。 表2 Query参数 参数 是否必选 参数类型 描述 update_time 否
ages 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workflow_id 是 String 工作流的ID。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 status
下载并安装AutoAWQ源码。 bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化
/pile-val", split="validation") 运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers sentencepiece #安装量化工具依赖 export
制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-3rdLLM-6