检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
对Qwen系列模型中的tokenizer 文件,需要修改代码。 修改tokenizer目录下面modeling_qwen.py文件的第38和39行,修改后如图3所示。 图3 修改Qwen tokenizer文件 父主题: 训练脚本说明
d_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ 父主题:
d_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ 父主题:
针对Qwen系列模型中的tokenizer文件,需要修改代码。 修改tokenizer目录下面modeling_qwen.py文件的第38和39行,修改后如图3所示。 图3 修改Qwen tokenizer文件 父主题: 训练脚本说明
\"bow\", \"crossbow\"], \"type\": \"string\"}}}" }' Step5 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 附录:基于vLLM(v0.3.2)不同模型推理支持的max-model-len长度说明 基于vLLM(v0
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。 ModelArts的AI Gallery中提供了常见的精度较高的算法和相应的训练数据集,用户可以在AI
图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。 ModelArts的AI Gallery中提供了常见的精度较高的算法和相应的训练数据集,用户可以在AI
描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 无 请求示例 同步数据集 POST https://{endpoint}/v2/{project_id}/d
描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 version_id 是 String 数据集版本ID。 请求参数 无 响应参数 无 请求示例 删除数据集标注版本 DELETE h
描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workforce_task_id 是 String 团队标注任务ID。 请求参数 无 响应参数 无 请求示例 删除团队标注任务 DELETE
可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: PROF_ENABLE=1 PROF_SAVE_PATH=/save_path
可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三:启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path
Port:端口号 在VS Code中手工配置远程连接时,在本地的ssh config文件中增加配置参数“StrictHostKeyChecking no”和“UserKnownHostsFile=/dev/null” Host xxx HostName x.x.x.x #IP地址
点间的通信速度。 操作步骤 单击资源池名称,进入资源池详情。 单击左侧“AI组件管理 > AI诊断”。 单击“诊断”,选择“日志上传路径”和NCCL Test节点,其余参数可保持默认值或根据实际需求修改。 测试使用的最大数据:取值范围[1, 1024],单位可选为“B”、“KB”
占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:启动训练脚本新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path
以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础上Step3 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path
modelarts:service:* 部署、启动、查新、更新模型服务。 建议配置。 仅在严格授权模式开启后,需要显式配置左侧权限。 LTS lts:logs:list 查询和展示LTS日志。 按需配置。 批量服务 OBS obs:object:GetObject obs:object:PutObject obs:bucket:CreateBucket
使用benchmark-tools访问推理服务时,输入输出的token和大于max_model_len,服务端返回报错Response payload is not completed,见图2。 再次设置输入输出的token和小于max_model_len访问推理服务,服务端响应200,见图3。
集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、婚姻状况、文化程度、是否有房贷和是否有个人贷款。 表1 数据源的具体字段及意义 字段名 含义 类型 描述 attr_1 年龄 Int 表示客户的年龄。 attr_2 职业 String