检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在Lite Cluster资源池上使用Snt9B完成分布式训练任务 场景描述 本案例介绍如何在Snt9B上进行分布式训练任务,其中Cluster资源池已经默认安装volcano调度器,训练任务默认使用volcano job形式下发lite池集群。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
Lite Cluster 资源池创建失败的原因与解决方法? Cluster资源池节点故障如何定位 特权池信息数据显示均为0%如何解决? 重置节点后无法正常使用?
delArts也提供了针对集群的配置模板。本章节通过使用ModelArts提供的模板查看指标和创建Dashboards查看指标的方式,说明如何进行仪表盘配置。Grafana的更多使用请参考Grafana官方文档。 准备工作 ModelArts提供了集群视图、节点视图、用户视图、任
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。 本案例介绍如何在ModelArts Lite场景下使用ranktable路由规划完成Pytorch NPU分布式训练任务,训练任务默认使用Volcano
ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考obsutil安装和配置。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
# 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
# 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
# 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
准备W8A8权重 前提条件 已完成准备BF16权重。 W8A8量化权重生成 介绍如何将BF16权重量化为W8A8的权重,具体操作步骤如下。 在Server机器上创建权重量化后的存放目录${path-to-file}/deepseekV3-w8a8或${path-to-file}/deepseekR1-w8a8目录。
推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu
Lite的接口即可。 MindSpore Lite提供了Python、C++以及JAVA三种应用开发接口。此处以Python接口为例,介绍如何使用MindSpore Lite Python API构建并推理Stable Diffusion模型,更多信息请参考MindSpore Lite应用开发。
附录:部署常见问题 如何解决DeepSeek-R1概率不触发深度思考的问题 问题:DeepSeek-R1概率不触发深度思考 解决方法:在prompt后面添加“<think>\n“。 如何解决“Available shared memory size is not enough“的问题
No module named 'numba' JupyterLab中文件保存失败,如何解决? 用户结束kernelgateway进程后报错Server Connection Error,如何恢复? 父主题: 开发环境
ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考安装和配置OBS命令行工具。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 benchmark方法介绍 性能benchmark包括两部分。