检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推荐引擎和排序引擎有什么区别? 推荐引擎 推荐引擎是以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 排序引擎是以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。 父主题: 自定义场景
终端节点 终端节点即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 推荐系统的终端节点如表1所示,请您根据业务需要选择对应区域的终端节点。 表1 推荐系统的终端节点 区域名称 区域 终端节点(Endpoint) 华北-北京四
自定义场景 推荐引擎和排序引擎有什么区别? RES支持哪些自定义策略? 重新运行被在线服务所引用的召回策略,是否需要重新部署在线服务? 在线服务获得推荐的调用次数如何计算? 自定义场景关闭后,为什么会自动启动?
h-4”,获取方法请参见获取用户名、账号名和项目name。 scope参数定义了Token的作用域,下面示例中获取的Token仅能访问project下的资源。您还可以设置Token的作用域为某个账号下所有资源或账号的某个project下的资源,详细定义请参见获取用户Token。 POST
提供的一种根据用户的工作职能定义权限的粗粒度授权机制。策略以API接口为粒度进行权限拆分,授权更加精细,可以精确到某个操作、资源和条件,能够满足企业对权限最小化的安全管控要求。 如果您要允许或是禁止某个接口的操作权限,请使用策略。 账号具备所有接口的调用权限,如果使用账号下的IA
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0
推荐系统提供了查询作业详情API接口,可返回作业详情。返回体中的作业状态字段“jobs.job_status”表示了当前任务的状态。 重新执行作业的API用来将任务以相同的配置重新执行一次。 通过查询作业详情API和重新执行作业的API可完成对任务状态的监控,并且可以根据任务状态决定是否需要重新执行任务。
在购物车场景,使用的召回候选集来自于离线计算基于物品的协同过滤生成的候选集,而为了尽可能保证推荐的匹配度,要求推荐出来的物品尽可能的与用户性别、体质和年龄等属性吻合,所以考虑基于用户性别、体质和年龄等属性用标签索引得到的满足条件物品列表item1, 对离线生成的items2进行如
分数时综合排序相关得分的权重值。 融合方式:当同时选择点击率预估和综合排序进行重排序时,汇总分数时的统计方式。根据数值属性的大小顺序(ORDER)或者绝对值进行权重累加(ABS)统计。 高级类型选项 打散 打散是指推荐的结果集中根据客体的选择的字符串类型的属性进行打散,避免推荐结果集过于集中,增加推荐结果的新颖性。
算子作业输出的数据,物品属性的名称来自于公共配置的全局特征信息文件。如过滤产品颜色为红色且产品品牌为华为的物品。 排序方式 “点击率预估” 特征工程:排序数据来源于排序算子作业产生的候选集。单击“选择”获取排序策略的任务别名和UUID。 模型文件路径:排序策略生成的模型存储路径。
2:置顶 -1:注销 否 同时,可以通过实时更新的方式,更新物品身上的status字段,实现秒级状态字段更新,来控制物品的上下架状态。具体操作指导可参考上传实时数据进行配置和对接。 父主题: 灵活配置物品状态和过期时间,保障有效性和实效性
List 每个Flow配置不同流量和候选集的规则,请参见表4。 config 是 Object 流程配置信息,请参见表5。 rank_uuid 否 String 排序策略生成的uuid。 feature_uuid 否 String 预处理的离线处理生成的uuid。 filter_uuid
允许删除RES的权限策略,控制他们对RES资源的使用范围。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户进行权限管理,您可以跳过本章节,不影响您使用RES服务的其它功能。 IAM是华为云提供权限管理的基础服务,无需付费即可使用,您只需要为您账号中的资源进行付费。关
自定义场景基于用户群体不同推荐场景的需求,提供了多种多样的推荐策略和算法,实现了端到端的自定义推荐场景搭建,使每一个推荐场景都能得到针对性的推荐效果提升。 前提条件 已经存在创建成功并完成数据探索的数据源。 由于训练作业运行需消耗资源,确保账户未欠费。 确保您使用的OBS目录与RES在同一区域。
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0
组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机的改进版本,因子分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出
候选集的召回策略 召回候选集的策略。 兴趣标签召回候选集:根据用户画像的兴趣标签召回候选集。 实时标签召回候选集:根据用户实时操作的物品的标签召回候选集。 默认兴趣标签召回候选集。 兴趣宽度 生成候选集中的兴趣宽度,值越小候选集中的类型越少。 说明: 选择兴趣宽度数量对应的,权重
荐结果集的生成。 各个召回策略的详细参数设置和输入输出请单击下方链接查看。 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐 业务规则-基于历史行为记忆生成候选集 业务规则-人工导入 基于属性匹配的召回策略
fields_feature_size_path 是 String 该文件标识了每一个域下的特征数量,排序数据处理接口会生成这个文件,文件路径为用户在排序数据预处理中输入的结果保存路径参数表示的路径的“fields_feature_size”目录下,文件名称为“part-00000”,需要用户提供文件完整路径。
并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 依赖作业名称 已经完成的可以提供用户和用户相似度关系的作业,用来进行用户的关联推荐。 topK 用户最感兴趣的排序在前K个的物品。 行为 行为类型:用户感兴趣的行为类型。 权重值:行为的初始权重。 衰减系数:用于衰减行为初始权重的系数。