检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
终端节点 终端节点即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 图引擎服务的终端节点如下表所示,请您根据业务需要选择对应区域的终端节点。 表1 图引擎服务的终端节点 区域名称 区域 终端节点(Endpoint) 华北-北京一
或不足的风险。一般适用于电商抢购等设备需求量瞬间大幅波动的场景。 表1列出了两种计费模式的区别。 表1 计费模式 计费模式 包年/包月 按需计费 付费方式 预付费 后付费 计费周期 按订单的购买周期计费。 秒级计费,按小时结算。 适用计费项 图规格(边数)、数据存储空间、和公网带宽费用
Louvain算法 概述 Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。 适用场景 Louvain算法适用于社团发掘、层次化聚类等场景。 参数说明 表1 Louvain算法参数说明
Paths:表示距离最短的时序路径。 Foremost Temporal Paths:表示尽可能早的到达目标节点的时序路径。 Fastest Temporal Paths :表示耗费时间最短的时序路径。 适用场景 适用于疫情或疾病传播溯源、信息传播和舆情分析、结合时序的路径规划、资金流通路径等场景。
最小化的安全管控要求。 策略:IAM最新提供的一种细粒度授权的能力,可以精确到具体服务的操作、资源以及请求条件等。基于策略的授权是一种更加灵活的授权方式,能够满足企业对权限最小化的安全管控要求。例如:针对GES服务,管理员能够控制IAM用户仅能对某一类云服务器资源进行指定的管理操作。
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
对于该source节点的随机游走将提前结束。 Int 1~2000 1000 label 否 希望输出的点的类型。 说明: 其值为空时,将不考虑点的类型,输出算法原始计算结果。 对其赋值时,将从计算结果中过滤出具有该“label”的点的返回。 String 节点label - directed
属性页签展示选中点或边的属性信息。 统计信息展示页签会显示出当前所框选的点边对应的标签和节点权重的数量。具体介绍请参考统计信息展示。 图2 算法区 表2 算法区介绍 界面元素 说明 输入算法名称,快速查找对应的算法。 展开算法的参数配置区域。 运行算法。 算法的属性设置区域。每个算法的属性不同,详细信息请参考算法介绍。
器下。 资源的价格 不同区域的资源价格可能有差异,请参见华为云服务价格详情。 如何选择可用区 是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。
生效。请求条件包括条件键和运算符,条件键表示策略语句的 Condition 元素,分为全局级条件键和服务级条件键。全局级条件键(前缀为g:)适用于所有操作,服务级条件键(前缀为服务缩写,如ges)仅适用于对应服务的操作。运算符与条件键一起使用,构成完整的条件判断语句。 GES通过
cn-north-1,可以从地区和终端节点中获取。 scope参数定义了Token的作用域,下面示例中获取的Token仅能访问project下的资源。您还可以设置Token的作用域为某个账号下所有资源或账号的某个project下的资源,详细定义请参见IAM获取用户Token。 POST
要考虑对图进行变更规格。 暂不支持一万边图的规格变更。 变更规格以后所有索引(复合索引和全文索引)都需要重新创建。 变更图规格的具体操作步骤如下: 登录管理控制台,在左侧导航栏中选择“图管理”。 对需要变更规格的图,单击图管理操作列中的“更多 > 变更规格”。 图1 选择变更规格
否 String 边上权重,取值为空或字符串, 当图中的边没有配置该属性时,算法会报错。 空:边上的权重、距离默认为“1"。 字符串:对应的边上的属性将作为权重。 OD_pairs和seeds参数二选一,当OD_pairs和seeds同时输入时,以OD_pair为准,忽略seeds。
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
SDK)是对GES提供的REST API进行的封装,以简化用户的开发工作。 SDK 业务面SDK 管理面SDK Cypher JDBC Driver访问GES 02 购买 GES的计费简单、易于预测,您既可以选择按照小时费率计费的按需计费方式,也可以选择更经济的预付费实例计费方式。
SUBSET:右值是属性值的子集 匹配运算符: PREFIX:右值是左值的前缀 NOTPREFIX:右值不是左值的前缀 SUFFIX:右值是左值的后缀 NOTSUFFIX:右值不是左值的后缀 SUBSTRING:右值是左值的子字符串 NOTSUBSTRING:右值不是左值的子字符串 FUZZY:模糊匹配
说明 directed 否 Boolean 是否考虑边的方向。取值为true或false,默认值为false。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。