检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
备份图和恢复图 备份图 恢复图 删除备份 导出备份到OBS 从OBS中导入备份 父主题: 管理图
图数据的格式 一般图数据格式 动态图数据格式 父主题: 元数据操作
GES资源 资源是服务中存在的对象。在GES中,资源如下,您可以在创建自定义策略时,通过指定资源的路径来选择特定资源。 表1 GES的指定资源与对应路径 指定资源 资源名称 资源的路径 graphName GES图名称 graphName backupName GES备份名称 backupName
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
6.25元/小时×336小时 = 2100元 由此可见,该GES图实例总共产生的费用为:2100元。 计费场景二 某用户于2023/08/18 14:00:00购买了一个按需计费的十亿边图,用了一段时间后,用户发现当前规格无法满足业务需要,于2023/08/20 10:00:0
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
状态码 返回值 说明 400 Bad Request 请求错误。 401 Unauthorized 鉴权失败。 403 Forbidden 没有操作权限。 404 Not Found 找不到资源。 500 Internal Server Error 服务内部错误。 503 Service
连通分量算法(Connected Component) 概述 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly connected compone
全最短路算法(All Shortest Paths) 概述 全最短路径算法(All Shortest Paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径。 适用场景 全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景。
管理面任务中心 管理面任务中心功能,可用于查看创建图、备份图、启动图、增加备份、导入图、导出图、升级图等操作的异步任务的详情。 具体操作步骤如下: 在左侧导航栏,选择“任务中心” 在“任务中心”页面可以查看对应图所执行任务的类型,任务名称,图名称,关联图,开始时间,结束时间,状态和运行结果。
度数关联度算法(Degree Correlation) 概述 度数关联度算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
点集最短路(Shortest Path of Vertex Sets) 概述 点集最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的最短路径。 适用场景 点集最短路算法(Shortest Path of Vertex Sets)适用于互联