检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
急刹(Emergency Braking)检测 自动驾驶车辆急刹有两个典型阈值:ACC(Adaptive Cruise Control)的最大减速度,和AEB(Autonomous Emergency Braking)的最大减速度。 急刹检测的目的是判断主车在行驶过程中是否达到ACC和AEB的最大减速度。
乘员舒适性(Driving Comfort)检测 乘员舒适性检测关注的是自动驾驶车辆行驶过程中,驾驶员感受到的舒适程度。 舒适程度通常可以利用整个行驶过程中的速度方差来进行客观反映,而变异系数是可以对不同速度区间舒适程度进行比较。 变异系数的公式如下所示。 表示变异系数,表示标准差,表示均值。
AB类均匀权重(Average)评分方案 该方案同样分为AB两类指标,其中A类总分为60分,B类总分为40分,A类指标按均匀权重扣分,B类指标同样按均匀权重扣分。 AB类均匀权重评分原则(Principle) A类60分,各A类指标得分权重相同。 B类40分,各B类指标得分权重相同。
消息topic格式规范 Vehicle 对于车辆自身基本数据录制的消息格式,需遵循一定规范,其中部分字段为必选,其他请根据实际需要自由选取。 表1 vehicle消息格式规范 格式名称 说明 VehicleInfo 车辆信息 消息格式中部分参数为必选,如使用该数据类型,则不可缺少
消息topic格式示例 消息topic具体格式要求请参考“消息topic格式规范”。接收到的消息topic示例请参考如下示例: Vehicle Gnss Ego_tf Object_array_vision Tag_record Control Predicted_objects
目标检测2D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054
减速度(Deceleration)检测 减速度检测的目的是: 判断主车在整个行驶过程中制动减速度是否超过对应的舒适性阈值。 本设计的减速度的默认阈值为3。 父主题: 内置评测指标说明
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 FROM ros:noetic COPY ros_hard_mining.py /home/main/ # 算法启动示例:
信息辅助系统激活(Information)检测 信息辅助系统激活用于评价算法是否按照预期激活以下六项功能: 倒车摄像头 环视摄像头 自动远光灯 驾驶员状态监测系统 抬头显示系统 夜视辅助系统 其实现逻辑与预警系统激活(Warning)检测、控制辅助系统激活(Control)检测一致。
数据来源为数据集子集 当数据集形式为数据集子集时,创建步骤如下: 在左侧菜单栏中单击“数据资产 > 数据集”。 选择“数据集”页签,单击“创建数据集”,填写数据集信息。 图1 创建数据集子集 名称:不得超过64个字符。支持中英文、数字、“-”、“_”,不支持特殊字符。 描述:数据
示例代码 作业输入输出规范示例代码如下图所示: 父主题: 数据提取作业(数据集)
示例镜像制作 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 启动命令: bash /home/Octopus/run.sh 镜像构建: docker build -f Dockerfile
加速度变化率(Jerk)检测 加速度变化率是加速度对时间的导数。 加速度变化率也被称为冲击度,冲击度反映了驾驶员的瞬态冲击体验。 纵向、侧向冲击度的阈值按德国冲击度标准取。 父主题: 内置评测指标说明
场景样例(Scenario Examples) 如下为具体场景和逻辑场景样例。 具体场景(Concrete Scenario) 具体场景样例: import standard scenario my_scenario: # Road Network map: map
平台会以环境变量的形式提供以下参数: rosbag_path: rosbag路径,以.bag结尾。 output_dir:最终输出数据集路径。 tmp_dir:供用户存储临时文件的目录。 task_content_json:人工打标需要的标签信息,详细参考“人工打标支持”。(如果没有人工打标,不需要此参数)。
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 启动命令: python3 /home/main/ros2opendata.py --lidar_calibration_id
示例代码 作业输入输出规范示例代码如下图所示: 代码文件命名为ros_hard_mining.py。 父主题: 场景挖掘作业(数据标记)
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 FROM ros:noetic COPY ros_to_dataset.py /home/main/ # 算法启动示例:
到达终点(Reach Destination)检测 到达终点检测的目的是判定主车是否到达场景文件中指定的全局路径规划的终点。 当主车的车辆坐标系原点进入终点为半径R(本设计取R为2m)范围内时, 则判定主车到达了终点。 在没有设置终点时, proto协议会把目标点默认初始化(0,0
触发器与触发条件(Trigger and condition) 用户可以使用wait+触发条件的方式来设置动作的触发条件condition,可以使用的触发条件有:触发条件(elapsed) 、触发条件(object_distance)、触发条件(point_distance) 、