检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
指按某种策略由已知判断推出新判断的思维过程。人工智能领域下,由机器模拟人类智能,使用构建的神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果的在线服务(Web Service)。 批量推理 批量推理是对批量数据进行推理的批量作业。 昇腾芯片 昇腾芯片又叫Ascend芯片,是华为自主研发的高计算力低功耗的AI芯片。
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
Notebook中选择自定义镜像与规格 存储配置选择“弹性文件服务SFS”,并且选择已创建的SFS Turbo实例,子目录挂载可选择默认不填写。 如果该SFS Turbo多人共用,则推荐用户编辑“子目录挂载”,创建自己的子目录进行划分。 图2 Notebook中选择弹性文件服务 使用Notebook将OBS数据导入SFS
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、
Notebook中选择自定义镜像与规格 存储配置选择“弹性文件服务SFS”,并且选择已创建的SFS Turbo实例,子目录挂载可选择默认不填写。 如果该SFS Turbo多人共用,则推荐用户编辑“子目录挂载”,创建自己的子目录进行划分。 图4 Notebook中选择弹性文件服务 Step2 使用Notebook将OBS数据导入SFS
Gallery”页面,填写“昵称”和“邮箱”,并根据提示获取验证码。阅读并同意《华为云AI Gallery数字内容发布协议》和《华为云AI Gallery服务协议》后,单击“确定”完成入驻。 图1 入驻AI Gallery 注册完成后,您可以在AI Gallery中报名实践活动或发布技术文章(AI说)。
#启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda
n"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --qua
开发环境GPU规格使用时长(单张Pnt1为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务CPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务GPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练核数
├── config ├── config.json # 请求的参数,根据实际启动的服务来调整 ├── mmlu_subject_mapping.json # 数据集配置
k" Step2 启动SD1.5训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。
数据校验:对您的数据集的数据进行校验,是否存在数据异常。 预测分析:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图1 复制登录指令 Step3 修改并上传镜像 1. 在ECS服务器中输入登录指令后,使用下列示例命令将Standard镜像上传至SWR: docker tag ${dockerfile_image_name}
少组。 “结果处理方式”:“更新属性到当前样本中”,或者“保存到对象存储服务(OBS)”。 “属性名称”:当选择“更新属性到当前样本中”时,需输入一个属性名称。 “结果存储目录”:当选择“保存到对象存储服务(OBS)”时,需指定一个用于存储的OBS路径。 “高级特征选项”:启用此
口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图1 复制登录指令 Step3 修改并上传镜像 1. 在ECS服务器中输入登录指令后,使用下列示例命令将Standard镜像上传至SWR: docker tag ${dockerfile_image_name}
n"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --qua
口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图1 复制登录指令 Step3 修改并上传镜像 1. 在ECS服务器中输入登录指令后,使用下列示例命令将Standard镜像上传至SWR: docker tag ${dockerfile_image_name}
n"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --qua