检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
态为“运行中”的模型名称,在“详情”页签,可获取模型调用路径,如图1。 图1 获取已部署模型的调用路径 获取预置服务的调用路径。在“预置服务”页签中,选择所需调用的科学计算大模型,单击“调用路径”,在“调用路径”弹窗可获取模型调用路径,如图2。 图2 获取预置服务的调用路径 使用Postman调用API
表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通
学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,
权限管理 如果您需要对华为云上购买的盘古大模型资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可
用户问题,作为运行Agent的输入。 响应参数 流式(Header中的stream参数为true) 状态码: 200 表4 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,执行Agent的消息以流式形式返回。 生成的内容以增量的方式逐步发送回来,
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}
微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 预测大模型选择建议 选择合适的预测大模
如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。 您可以使用统
ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。 ERA5数据下载官方指导:https://confluence.ecmwf.int/display/CKB/
提升数据治理的效率和效果。 通过整合上述功能,数据工程在AI研发中不仅帮助用户高效构建高质量的训练数据集,还通过全流程的数据处理和管理,探索数据与模型性能的内在联系,为模型训练和应用提供坚实的数据基础,推动了模型的精确训练与持续优化,提升了AI应用开发的效率和成果的可靠性。 父主题:
选择“微调”。 基础模型 选择所需微调的基础模型。 训练参数 数据集 训练数据集。 类别特征列 指定使用LabelEncoder处理的字符串类型类别特征的列表。格式为["列名1","列名2"],默认设置为[],表示没有需要处理的类别特征。 LabelEncoder的作用是将类别特征转换为数值型特征,使模型能够处理这些特征。
业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 Agent应用实践 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您将全面理解如何调用和集成盘古大模型的各类接
类型、值:选择“引用 > query”。query为开始节点的输出变量值。 在“模型配置”中,选择模型并进行参数配置。 在“意图配置”中,填写场景意图。 其中,意图的内容为针对该场景的描述语句或关键词,同时也将作为大模型进行推理和分类的依据,数量为2 ~ 5个。 在“高级配置”中配置提示词。单击“确定”,完成参数配置。
强模型的泛化能力。取值范围:[0,1]。 给输入数据加噪音的尺度 给输入数据加噪音的尺度,定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 给输出数据加噪音的概率 给输出数据加噪音的概率,定
应用调试成功后,可以使用API调用该应用。 获取调用路径 应用的调用路径获取步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 在“工作台 > 应用”页面,单击所需应用的“ > 调用路径”。 图1 获取应用调用路径-1
模型选择 选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性。建议不要与温度同时调整。 温度 用于控制生成结果的随机性。调高温度,会使得模型的输出更具多样性和创
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:
模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比
提示词工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简
生成的内容结尾必须要引导观众购买; 6.生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样;