检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建可信联邦学习训练型作业 参考步骤创建横向训练型作业创建可信联邦学习训练型作业,运行环境选择ModelArts和PriorityModelArts时,新增的资源配额是使用MA Lite资源池进行训练时,工作负载需要配置的资源参数。 图2 配置参数 父主题: 可信联邦学习作业
"result_ext" : null } 状态码 状态码 描述 200 查询样本对齐结果成功 401 操作无权限 500 内部服务器错误 父主题: 联邦学习作业管理
开任务详情,可以查看更详细的计算过程信息。 图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 可信联邦学习作业
f6d964d274" } 状态码 状态码 描述 200 执行样本对齐作业成功 401 操作无权限 500 内部服务器错误 父主题: 联邦学习作业管理
服务或者登录到计算节点后台获取到对应路径的文件。 当只有一方提供特征时,预测的结果如下,第一列是用户的id,第二列是用户是否是高价值用户的标签,第三列、第四列是对应的概率: id,label,proba_0,proba_1 4e07408562bedb8b60ce05c1decf
列表。同时,有敏感信息的数据,还可以单独设置隐私策略,并在发布到空间侧后对其他参与方生效,限制敏感信息的使用。 数据预处理使用场景:训练机器学习模型前,可通过转换函数将特征数据转换成更加适合算法模型的特征数据。 父主题: 管理数据
"result_ext" : "" } 状态码 状态码 描述 200 查询执行结果成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。
操作步骤如下: 以下教程适用于ECS机器系统为Centos 7.5。操作前需要购买两台同网段同文件系统的ecs节点A与节点B。 在两台虚机上安装rsync及corntab服务,已安装则跳过(HCS底座发行的系统镜像是默认安装的;客户提供的机器,需要客户运维侧保障)。 参照如何在两
操作步骤如下: 以下教程适用于ECS机器系统为Centos 7.5。操作前需要购买两台同网段同文件系统的ecs节点A与节点B。 在两台虚机上安装rsync及corntab服务,已安装则跳过(HCS底座发行的系统镜像是默认安装的;客户提供的机器,需要客户运维侧保障)。 参照如何在两
乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)
首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
联机分析处理的字段类型:UNIQUE_ID,SENSITIVE,NON_SENSITIVE fl_label_type String 字段标签分类:UNIQUE_ID.唯一标识,FEATURE.特征,LABEL.标签,FILTER.过滤字段 请求示例 获取字段隐私详情 get https://x.x.x.x:1234
UNIQUE_ID--唯一标识 2.SENSITIVE--敏感 3.NON_SENSITIVE--非敏感 fl_label_type String 联邦学习字段标签分类 privacy_policy String 字段数据处理隐私策略。 1.MASK--掩码 2.NONE--不处理 privacy_policy_ext
择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
可信联邦学习作业 联邦预测作业 常见问题 了解更多常见问题、案例和解决方案 热门案例 什么是区域和可用区? 什么是区域和项目? 合作方如何获取租户名称? 代理如何切换状态? 节点的可用资源如何查询? 什么是配额? 更多 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦!
参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模