检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无
数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。 为了帮
创建图片类数据集评估标准 ModelArts Studio大模型开发平台针对图片数据集预设的一套评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。
创建视频类数据集评估标准 ModelArts Studio大模型开发平台针对视频数据集预设了一套评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建视频类数据集评估任务。
气象类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单
从PDF中提取内容转换为结构化数据。 JSON内容提取 从JSON文件(键值对类型文件)中提取出内容。 HTML内容提取 基于标签路径提取HTML数据内容,并将其他与待提取标签路径无关的内容删除。 电子书内容提取 从电子书中提取出所有文本内容。 智能文档解析 从PDF(支持扫描版)或图片中提
图片类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1、表2。 图文类加工算子能力清单 表1
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、结构和语言
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型主要用于。 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度
说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。
视频类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
1.jpg 1.txt 2.jpg 2.txt 单标签的标签文件示例,如1.txt文件内容如下所示: Cat 多标签的标签文件示例,如2.txt文件内容如下所示: Cat Dog 物体检测数据集标注文件说明 物体检测数据集支持格式为ModelArts
需求进行自定义调整,确保评估标准与应用场景高度契合,从而为后续的模型训练和优化提供高质量的数据支持。 视频数据质量标准 V1.0:ModelArts Studio大模型开发平台针对视频数据集预设了一套评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度。该标准帮助
NLP大模型训练常见报错与解决方案 NLP大模型训练常见报错及解决方案请详见表1。 表1 NLP大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。
以调整学习率。取值范围:(0,1)。 权重衰减系数 用于定义权重衰减的系数。权重衰减是一种正则化技术,可以防止模型过拟合。取值需≥0。 学习率 用于定义学习率的大小。学习率决定了模型参数在每次更新时变化的幅度。如果学习率过大,模型可能会在最优解附近震荡而无法收敛。如果学习率过小,
针对不同类型的数据集,平台提供了专用的加工算子,有效提升数据质量并支持大规模数据处理,确保生成的数据集符合训练的标准。 数据标注:对于无标签的数据,平台支持进行标注或重新标注,以提升数据集的标注质量。针对文本和图片类数据集,平台还提供AI预标注功能,利用盘古大模型的智能能力,显
量。 数据标注:在大模型的训练中,数据标注至关重要。平台不仅支持对无标签数据进行手动标注或重新标注,还支持对图片、视频类数据集通过AI预标注技术提升标注效率。AI预标注功能通过自动化的方式为数据集生成初步的标签,用户可以在此基础上进行人工审核和修正,从而大幅度减少人工标注的工作量
选择导入的数据 数据集信息设置完成后,填写“数据集名称”和“描述”,并设置“拓展信息”。 拓展信息包括“标签设置”与“数据版权”: 标签设置。通过标签设置,可以给数据集添加行业、语言、标签信息。 数据版权设置。训练模型的数据集除用户自行构建外,也可能会使用开源的数据集。数据版权功能主要
Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”,单击界面右上角“创建工程”。 输入工程名称、描述,选择行业、标签后。单击“确定”完成工程创建。 图1 创建提示词工程 父主题: 撰写提示词
其操作流程见图1、表1。这种全面的数据准备机制,确保了数据质量的可靠性,为各类模型开发奠定了坚实的基础。 图1 数据集准备与处理流程图 表1 数据集准备与处理流程表 流程 子流程 说明 导入数据至盘古平台 创建原始数据集 数据集是指用于模型训练或评测的一组相关数据样本,上传至平