检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理
在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F
筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练
概述 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相
已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情
删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是
获取横向联邦学习作业详情 功能介绍 获取横向联邦学习作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
VFL_SAMPLE_ALIGNMENT, VFL_PREDICT, PIR_SQL; label_dataset 是 String 标签数据集,最大值100 label_agent 是 String 标签方可信计算节点,最大值100 job_name 是 String 作业名称。名称不能以空白字符开头结尾、或者包含下列任何字符:\
查询联邦学习作业列表 功能介绍 查询联邦学习作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String
MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String 标签数据集,最大长度100 label_agent String 标签方可信计算节点,最大长度100 batch_size Integer lr批大小,最小值1
objects 所选数据集特征 label_dataset 否 String 标签数据集,最大长度100 label 否 String 标签列名,最大长度1000 label_agent 否 String 标签方代理id,最大32位,由字母和数字组成 job_name 否 String
MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100 label_agent 否 String 标签方可信计算节点,最大长度100 batch_size 否 Integer
执行横向联邦学习作业 功能介绍 执行横向联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id}/execute 表1 路径参数 参数 是否必选 参数类型 描述 project_id
Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced
步骤4中勾选的模型不包含标签方特征,联邦预测支持只勾选己方数据集发起单方预测。 图1 发起预测 图2 勾选数据集 在“联邦预测”页面批量预测Tab页单击“历史预测”,可以“查看结果”和“作业报告”。 “查看结果”为预测结果存储相对路径。分类作业的预测结果为0/1标签以及正负样本概率,0
String 数据集名 label_dataset 否 String 标签数据集,最大长度100 label_agent 否 String 标签方可信计算节点,最大长度100 label_agent_name 否 String 标签方可信计算节点名称,最大长度128 host_agent_id
用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。填写完作业参数,单击“确定”即可开始训练作业。
假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1
-1.103220799,2.375621631 注意由于这是新产生的业务数据,企业A并不知道这些用户是否是高价值用户,因此没有label用户标签字段。 表2 大数据厂商B的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 大数据厂商数据特征
字段类型 描述 id string hash过后的手机号字符串 col0-col4 label float int 企业A数据特征 企业A对用户的标签属性 industry_all.csv id,col0,col1,col2,col3,col4,label 5feceb66ffc86f3