检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
“添加对比版本”下拉框选择之前已经训练完成的数据进行对比。 详细评估 “详细评估”下方显示各个标签下准确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续
s的数据标注页面,开始手动标注数据。 图6 数据集标注任务 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图7 标签解析 后续操作 选择训练数据集后,单击右下角的“下一步”,进入应
您可以在上方单击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下正确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续
您可以在上方单击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下正确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续
由于模型训练过程需要有标签的数据,针对已上传的数据集,手动添加或修改标签。 单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
“模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参数值,包括“精准率”、“召回率”、“F1值”。您可以在上方单击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下的样品数量比例,单击各标签,右侧可查看该标签识别错误的图片。
自动标注数据 单击“下一步”,创建SKU后,自动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 在“数据选择”页面选择训练数据集,针对未标注的数
“模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参数值,包括“精准率”、“召回率”、“F1值”。您可以在上方单击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下的样品数量比例,单击各标签,右侧可查看该标签识别错误的图片。
支持自主上传文本数据,构建高精度文本分类预测模型,适配不同行业场景的业务数据,快速获得定制服务。此工作流仅支持对中文进行文本分类,且支持单标签分类和多标签分类。 适用场景 智能问答、舆情分析、内容推荐等场景。 优势 针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支
“整体评估”左侧显示当前模型的标签名称和评估参数值,包括“精准率”、“召回率”、“F1值”。 “整体评估”右侧显示当前模型和其他版本模型的评估参数值柱状图,包括“精准率”、“召回率”、“F1值”。您可以在上方单击选择“对比版本”。 您可以在左侧选择不同的标签,右侧会显示对应标签样本的评估参数值柱状图。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 所有图片放在一个文件目录下,示例如下所示。 ├─Training-Dataset
提供文本分类项目的通用工作流,仅适用于中文文本的分类场景,支持单标签分类和多标签分类。 多语种文本分类工作流 提供多语种文本分类项目的通用工作流,支持包括英语,法语,德语,西班牙语,葡萄牙语,阿拉伯语等语种的文本,支持单标签分类和多标签分类。 通用实体抽取工作流 提供实体抽取项目的通用工作
”和“标签集”。 图4 导入数据集 勾选数据集,然后单击“确定”。 数据集导入后,“数据选择”页面右上角会显示“数据集导入成功”。 导入勾选数据集后,在数据选择页面勾选当前应用开发所需的训练数据集。 由于模型训练过程需要有标签的数据,针对已上传的数据集,手动添加或修改标签。 单击
细评估。 模型评估 图6 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比 图7 评估参数对比 左侧是各个标签数据的精确率、召回率、F1值。勾选标签,右侧会显示对应标签数据经过预置模型和增量模型评估后的参数对比柱状图。 详细评估
“模型评估”显示当前模型的“版本”、“标签数量”、“验证集数量”。 “评估参数对比”显示当前模型和其他版本模型的评估参数值柱状图,包括“交并比”、“精准率”、“召回率”。您可以在上方单击选择“对比版本”。 详细评估 在“模型评估”页面,您可以查看测试集中数据模型预测结果。 “详细评估”左侧显示标注标签,右侧显示第二相交并比指标较低的图片。
新建训练数据集后,勾选当前应用开发所需的训练数据集。 由于该工作流所需数据集需标注10%数据量用于测试,其余90%无需标注。针对已上传的数据集,您可以手动添加或修改标签。 单击数据集操作列的“标注测试图片”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 导入数据集 在“数据选择”页面,单击“导入数据集”。
在“应用资产”页签下,可以查看当前应用的资产信息,比如通用文本分类工作流中的资产信息就是训练数据集,您可以查看“数据集名称”、“描述”、“数据量”、“标注进度”、“标签总数”、“创建时间”和“操作”,其中“操作”列可执行“管理”和“删除”操作。 “管理”:进入数据集管理页面,单击“开始标注”,可手动标注数据。
工作流介绍 工作流简介 车牌检测与识别技术对于交通管理智能化、提高交通执法的稳定性具有重要意义。ModelArts Pro提供无监督车牌检测工作流,基于高精度的无监督车牌检测算法,无需用户标注数据,大大降低标注成本和提高车牌检测场景上线效率。 功能介绍 无需标注数据,构建无监督车牌检测模型,用于识别不同场景下的车牌。
选择数据 在使用刹车盘识别工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练刹车盘类型识别模型,并查看训练的模型准确率和误差的变化。
准备数据 选择数据 在使用云状识别工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练云状类型识别模型,并查看训练的模型准确率和误差的变化。