检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
问题一:文本翻译插件运行失败,报错信息如图1。 图1 文本翻译插件运行失败 可能原因:调用文本翻译API的Token错误或失效。 解决方法:参考创建多语言文本翻译插件,重新获取Token并进行试运行。 问题二:文本翻译失败,如图2,工作流不输出翻译后的内容,始终处于提问状态。
场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑(例如金融分析、医疗诊断等),则需要更为精确的处理方式: 如果该场景的业务规则较
有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以
根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应
西南-贵阳一 Pangu-Predict-Table-Cla-2.0.0 2024年12月发布的版本,支持分析历史数据中的特征与类别的关系,学习出一种映射规则或函数,然后应用这个规则对未来未知的数据点进行分类。 Pangu-Predict-Table-Reg-2.0.0 2024年
盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
使用盘古NLP大模型创建Python编码助手应用 05 实践 通过基模型训练出行业大模型和提示词写作的最佳实践,您将深入掌握行业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 Agent应用实践 06 API 通过API文档
ects”,其中{Endpoint}为IAM的终端节点,可以从地区和终端节点获取。接口的认证鉴权请参见认证鉴权。 响应示例如下,例如,对话机器人服务部署的区域为“cn-north-4”,响应消息体中查找“name”为“cn-north-4”,其中projects下的“id”即为项目ID。
https://{endpoint}/v1/{project_id}/deployments/{deployment_id}/chat/completions 请求方法 HTTP请求方法,表示服务正在请求操作类型,包括: GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。
模型的训练效果和精度。 通过这些数据加工操作,平台能够有效清理噪声数据、标准化数据格式,并优化数据集的整体质量。数据加工不仅仅是简单的数据处理,它还会根据数据类型和业务场景进行有针对性的优化,从而为模型训练提供高质量的输入,提升模型的表现。 数据加工意义 数据加工在大模型开发中具
工作流执行的结果。 工作流 Token计算器 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 Token计算器 用户在部署服务的过程中,建议开启“安全护栏”功能,以保证内容的安全性。
低代码构建多语言文本翻译工作流 方案设计 构建流程 效果评估与优化 典型问题 附录 父主题: Agent应用实践
盘古科学计算大模型能力与规格 盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平
常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
输入框中将自动填入角色指令模板。 图2 Prompt builder 填写后可通过大模型进行优化,单击“智能优化”,在 “Prompt优化”窗口中单击“确定”。 图3 Prompt优化示例 步骤3:添加插件 应用支持添加插件技能,可添加“预置插件”和“个人插件”。添加插件可以为
入框中将自动填入角色指令模板。 示例如图2,您可以依据模板进行填写。 图2 配置Prompt 填写后可通过大模型进行优化,单击“智能优化”,在 “Prompt优化”窗口中单击“确定”。 步骤3:添加预置插件 应用支持添加插件技能,可添加“预置插件”和“个人插件”。添加插件可以为应
理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具
理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 数据工程介绍