检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169
模型运行时环境。 model_metrics String 模型精度信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_type String 模型类型,取值为TensorFlow/Image/PyTorch/Template/MindSpore。
取值范围:1~100000 学习率/learning_rate 设置每个迭代步数(iteration)模型参数/权重更新的速率。学习率设置得过高会导致模型难以收敛,过低则会导致模型收敛速度过慢。 取值范围:0~0.1 默认值:0.00002 建议微调场景的学习率设置在10-5这个量级。
Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169
制台上完成。 更多裸金属服务器的介绍请见裸金属服务器 BMS。 xPU xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。
扣费。在“费用中心 > 账单管理 > 流水和明细账单 > 流水账单”中,“消费时间”即按需产品的实际使用时间。 查看自动学习和Workflow的账单 自动学习和Workflow运行时,在进行训练作业和部署服务时,会产生不同的账单。 训练作业产生的账单可参考查看训练作业的账单查询。
Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169
/home_host/work cd /home_host/work 在迁移onnx pipeline前,首先需要确保原始的onnx pipeline能在昇腾机器的ARM CPU上正常执行。进入容器环境后,安装依赖包。 pip install torch==1.11.0 onnx transformers==4
source_type String 此规格应用于模型的类型,取值为空或auto,默认为空,代表是用户自己产生的模型;取值为auto时,代表是自动学习训练的模型,计费方式有差别。 is_free Boolean 当前规格是否是免费规格,“true”表示是免费规格。 over_quota Boolean
GET 127.0.0.1:8080/goodbye 图3 访问在线服务 limit/request配置cpu和内存大小,已知单节点Snt9B机器为:8张Snt9B卡+192u1536g,请合理规划,避免cpu和内存限制过小引起任务无法正常运行。 父主题: Lite Cluster资源使用
Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169
图4 修改build_image.sh 执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git clone,请确保机器环境可以访问公网。 sh build_image.sh --base-image=${base_image} --image-name=${image_name}
图4 修改build_image.sh 执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git clone,请确保机器环境可以访问公网。 sh build_image.sh --base-image=${base_image} --image-name=${image_name}
erence/ascend_vllm/ 执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git clone,请确保机器环境可以访问公网。 sh build_image.sh --base-image=${base_image} --image-name=${image_name}
图3 修改build_image.sh 执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git clone,请确保机器环境可以访问公网。 sh build_image.sh --base-image=${base_image} --image-name=${image_name}
权限配置 权限列表 为了便于理解权限相关内容,建议先阅读ModelArts权限管理基本概念。 表1 服务授权列表 待授权的服务 适用场景 ModelArts 授予子用户使用ModelArts服务的权限。 ModelArts CommonOperations没有任何专属资源池的创建
Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169
示例一:在Dify中配置支持Function Calling的模型使用 示例二:通过Function Calling扩展大语言模型对外部环境的理解 父主题: 通过Function Calling扩展大语言模型交互能力
“特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的人们来说是有价值、有意义的数据。“数据处理”又分为“数据校验”、“数据清洗”、“数据选择”和“数据增强”四类。
系统将根据您的模型匹配提供可用的计算资源。请在下拉框中选择可用资源,如果资源标识为售罄,表示暂无此资源。 例如,模型来源于自动学习项目,则计算资源将自动关联自动学习规格供使用。 “实例数” 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置