检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
支持区域: 西南-贵阳一 使用盘古预置NLP大模型进行文本对话 应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 支持区域: 西南-贵阳一 使用盘古应用百宝箱生成创意活动方案
问答模块:盘古-NLP-N2-基础功能模型 说明:该模块需要具备多轮对话能力和阅读理解能力。当前基模型已经具备了通用的多轮对话能力和阅读理解能力,可以通过指令微调进一步强化大模型在特定垂域上的多轮对话能力和阅读理解能力。
知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。
在“试运行”页面,输入对话。 如图18,当用户分别输入对话类问题(如“你好”)、翻译类问题(如“翻译奶茶到日语”)时,“意图识别”节点对用户的意图进行分类,最终输出翻译后的内容。 图18 试运行工作流 父主题: 低代码构建多语言文本翻译工作流
提问器节点:提供了在对话过程中向用户收集更多信息的能力。 插件节点:用于引入API插件,根据节点的输入,执行用户定义的插件,将插件执行结果作为节点的输出。 判断节点:编排应用时作为分支切换节点,可以根据输入满足的判断条件,指定执行对应的工作流分支。
平台提供了高效的API接口,确保用户能够方便地将模型嵌入到自己的应用中,实现智能对话、文本生成等功能。 父主题: 产品功能
二、人工智能助手的功能特点 智能对话:通过先进的自然语言处理技术,人工智能助手能够理解和回应用户的语音或文本输入,实现流畅的人机交互。 个性化推荐:基于对用户行为习惯的学习,人工智能助手能提供高度定制化的内容和服务建议,如音乐推荐、新闻资讯等。
管理NLP大模型部署任务 调用NLP大模型 使用“能力调测”调用NLP大模型 使用该功能调用部署后的预置服务进行文本对话,支持设置人设和参数等。 使用“能力调测”调用NLP大模型 使用API调用NLP大模型 可调用API接口与NLP预置服务进行文本对话。
在一个客户服务问答系统中,可以用特定领域(如电商、保险)的对话数据对预训练模型进行微调,使其更好地理解和回答与该领域相关的问题。 此外,针对微调训练任务,平台提供了两种微调方式: 全量微调:适合有充足数据并关注特定任务性能的场景。
优化训练数据的质量 在数据科学和机器学习领域,数据的质量和多样性对模型的效果至关重要。通过有效的数据预处理和数据优化方法,通过提升训练数据的质量可以显著提升训练所得模型的效果。以下是一些关键的数据优化方法及其具体过程: 数据加工 错误数据过滤 :在大规模数据集中,噪声和错误数据是不可避免的
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模型
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息头
提示词写作常用方法论 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例
优化推理超参数 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,比如长度、随机性、创造性、多样性、准确性、丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,表1提供了典型推理参数的建议值和说明,供您参考: 表1