检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
s://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
s://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path sh demo.sh localhost
上传镜像 操作场景 客户端上传镜像,是指在安装了容器引擎客户端的机器上使用docker命令将镜像上传到容器镜像服务的镜像仓库。 如果容器引擎客户端机器为云上的ECS或CCE节点,根据机器所在区域有两种网络链路可以选择: 如果机器与容器镜像仓库在同一区域,则上传镜像走内网链路。 如
使用ModelArts Standard部署模型并推理预测 推理部署使用场景 创建模型 创建模型规范参考 将模型部署为实时推理作业 将模型部署为批量推理服务 管理ModelArts模型 管理同步在线服务 管理批量推理作业
录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: PROF_ENABLE=1 PROF_SAVE_PATH=/save_path sh demo.sh localhost
录制命令如下: 在启动训练脚本基础:步骤三:启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path sh demo.sh localhost
训练和服务部署,工作流发布至运行态后,部分运行的开关默认关闭,节点全部运行。用户可在权限管理页面打开开关,选择指定的场景进行运行。 部分运行能力支持同一个节点被定义在不同的运行场景中,但是需要用户自行保证节点之间数据依赖的正确性。另外,部分运行能力仅支持在运行态进行配置运行,不支持在开发态进行调试。
如何在Notebook中安装外部库? ModelArts Notebook中已安装Jupyter、Python程序包等多种环境,包括TensorFlow、MindSpore、PyTorch、Spark等。您也可以使用pip install在Notobook或Terminal中安装外部库。 在Notebook中安装
弹出“发布AI Gallery Notebook”页面。 图1 单击“创建分享” 在“发布AI Gallery Notebook”页面填写参数,单击“创建”将Notebook代码样例分享至AI Gallery。 填写“发布标题”,标题长度为3~64个字符,不能包含字符“\ / :
模型的下游任务评测效果变差。影响大模型loss收敛的原因是多方面的:首先,数据问题可能导致不收敛,比如数据预处理不完善;其次,模型的训练超参数也同样会导致类似的情况;再者,模型本身的算法设计过程也可能会引入不收敛情况;最后,则是由计算过程导致的模型收敛问题。 模型精度(以模型评测结果衡量的各种指标,广义的Model
r TensorFlow为ps,worker “MA_TASK_NAME=worker” MA_NUM_HOSTS 实例数。系统自动从资源参数的“实例数”中读取。 “MA_NUM_HOSTS=4” VC_TASK_INDEX 当前容器索引,容器从0开始编号。单机训练的时候,该字段
Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_finetune_train.sh 训练执行脚本中配置了保存checkpoint的频率,每500steps保存一次,如果磁盘空间较小,这个值可以改大到5000,避免磁盘空间写满,导致训练失败终止。
在数据集详情页的“全部”页签中,单击“自动分组 > 启动任务”。 只能在“全部”页签下启动自动分组任务或查看任务历史。 在弹出的“自动分组”对话框中,填写参数信息,然后单击“确定”。 “分组数”:填写2~200之间的整数,指将图片分为多少组。 “结果处理方式”:“更新属性到当前样本中”,或者“保存到对象存储服务(OBS)”。
计算过程如下: 创建自动学习项目时,无法直接选择专属资源池。可在项目创建成功后,进入自动学习详情页,然后单击右上角“配置”,在“Workflow配置 > 资源配置”中,选择使用专属资源池。 存储费用:自动学习作业的数据通过对象存储服务(OBS)上传或导出,存储计费按照OBS的计费规则。
使用Grafana查看AOM中的监控指标 安装配置Grafana 配置Grafana数据源 配置仪表盘查看指标数据 父主题: ModelArts Standard资源监控
如果有多模型复合场景,推荐使用自定义镜像方式,通过从容器镜像(SWR)中选择元模型的方式创建模型部署服务。 制作自定义镜像请参考从0-1制作自定义镜像并创建AI应用。 父主题: Standard推理部署
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
成AI建模和应用。 如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建