检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。 DataParallel进行单机多卡训练的优缺点 代码简单:仅需修改一行代码。 通信瓶颈 :负责reducer的GPU更新模型参数后分发到不同的GPU,因此有较大的通信开销。 GPU负载不均衡:负责r
首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kuberne
Standard推理部署 表5 推理部署列表 样例 对应功能 场景 说明 基于ModelArts Standard一键完成商超商品识别模型部署 在线服务 物体检测 此案例以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。
首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kuberne
首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kuberne
本案例在Notebook上部署推理服务进行调试,因此需要创建Notebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。
本案例在Notebook上部署推理服务进行调试,因此需要创建Notebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。
H、sys.path; 用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误; 用户使用的cann、cuda环境有兼容性问题; 用户的docker镜像配置错误、网络或防火墙限制、镜像构建问题(文件权限、依赖缺失或构建命令错误)等原因导致的。 父主题:
通过公网访问通道的方式访问在线服务 背景描述 ModelArts推理默认使用公网访问在线服务。在线服务部署成功后,将为用户提供一个可调用的API,此API为标准Restful API。您可以在服务详情页面,调用指南页签中查看API接口公网地址。 图1 API接口公网地址 约束限制
s://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
s://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
s://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
s://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path sh demo.sh localhost
${User}@${HostName} -p ${Port} rm -rf /home/ma-user/.vscode-server/bin/ 参数说明: - IdentityFile:本地密钥路径 - User:用户名,例如:ma-user - HostName:IP地址 - Port:端口号
单击资源池名称,进入资源池详情。 单击左侧“AI组件管理 > AI诊断”。 单击“诊断”,选择“日志上传路径”和NCCL Test节点,其余参数可保持默认值或根据实际需求修改。 测试使用的最大数据:取值范围[1, 1024],单位可选为“B”、“KB”、“MB”、“GB”“TB”。
录制命令如下: 在启动训练脚本基础上Step3 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path sh demo.sh localhost