检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。 这里提供了一些微调参数的建议值和说明,供您参考: 表1 微调参数的建议和说明 训练参数 范围 建议值 说明 训练轮数(epoch)
如何调整推理参数,使盘古大模型效果最优 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考:
优化推理超参数 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,比如长度、随机性、创造性、多样性、准确性、丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,表1提供了典型推理参数的建议值和说明,供您参考: 表1
训练参数优化 科学计算大模型的训练参数调优可以考虑学习率参数,学习率(Learning Rate)是模型训练中最重要的超参数之一,它直接影响模型的收敛速度和最终性能: 学习率过高,会导致损失在训练初期快速下降,但随后波动较大,甚至出现NaN(梯度爆炸)的问题。 学习率过低,会导致
通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。 表1提供了一些微调参数的建议值和说明,供您参考: 表1 典型微调参数说明 训练参数 范围 建议值 说明 训练轮数(epoch)
在“创建训练任务”页面,参考表2完成训练参数设置。 表2 NLP大模型全量微调参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“NLP大模型”。 训练类型 选择“微调”。 训练目标 选择“全量微调”。 全量微调:在模型进行有监督微调时,对大模型的所有参数进行更新。
表1 NlP大模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“NLP大模型”。 部署模型 选择需要进行部署的模型。 最大TOKEN长度 模型可最大请求的上下文TOKEN数。 部署方式 支持“云上部署”和“边缘部署”,其中,云上
专业大模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“专业大模型 > BI专业大模型”或“专业大模型 > 搜索专业大模型”。 部署模型 在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 安全护栏 选择模式 安全护栏保障模型调用安全。
区域中期海洋智能预测模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型” 模型类型 选择“科学计算大模型”。 场景 本案例中选择“区域中期海洋智能预测”。 部署模型 从资产中选择需要部署的模型。 部署区域中期海洋智能预测服务需要同时选择“区域中期海洋智能预测”和“全球中期海洋智能预测”两个模型。
模型进行部署。 部署模型 在“从资产选模型”选择所需模型。 部署方式 支持“云上部署”和“边缘部署”,其中,云上部署指算法部署至平台提供的资源池中。边缘部署指算法部署至客户的边缘设备中(仅支持边缘部署的模型可配置边缘部署)。 部分模型资产支持边缘部署方式,若选择“边缘部署”: 本
配置服务访问授权 配置OBS访问授权 ModelArts Studio大模型开发平台使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。
在“创建训练任务”页面,参考表1完成训练参数设置。 其中,“数据配置”展示了各训练数据涉及到的全部参数,请根据具体前端页面展示的参数进行设置。 表1 科学计算大模型中期天气要素预测微调训练参数说明 参数分类 参数名称 参数说明 训练配置 模型来源 选择“盘古大模型”。 模型类型
ntroller表示主控节点。 在服务器执行如下命令,判断docker是否安装成功。 systemctl status docker 在服务器执行如下命令,判断edge agent是否安装成功。 hdactl info 配置NFS网盘服务。 安装NFS服务 该步骤需要设备联网下载软件依赖包。
1、3、6、24小时 0.25°*0.25° 全球 响应参数 状态码: 201 表9 响应Body参数 参数 参数类型 描述 tasks Array of tasks objects 创建的作业列表。 表10 tasks 参数 参数类型 描述 id String 创建的作业ID。 请求示例
元即可部署,4K支持256并发,32K支持256并发。 Pangu-NLP-N1-32K-3.2.36 32K 4K 2025年1月发布的版本,支持32K序列长度训练,4K/32K序列长度推理。全量微调、LoRA微调8个训练单元起训,1个推理单元即可部署,4K支持256并发,32K支持256并发。
入应用阶段。主要包括以下几个方面: 模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或再训练。随着新数据的加入,模型可能需要进行调整,以保证其在实际应用中的表现稳定。
E覆盖全球海洋主要海域(以下简称“全球海域”) 响应参数 状态码: 201 表9 响应Body参数 参数 参数类型 描述 tasks Array of tasks objects 创建的作业列表。 表10 tasks 参数 参数类型 描述 id String 创建的作业ID。 请求示例
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,
台支持多种节点,包括开始、结束、大模型、意图识别、提问器、插件、判断、代码、知识检索和消息节点。 创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实现复杂业务流程的编排,从而快速构建应用。 工作流方式主要面向目标任务包含多