检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常见问题 MindSpore Lite问题定位指南 模型转换报错如何查看日志和定位? 日志提示Compile graph failed 日志提示Custom op has no reg_op_name attr 父主题: GPU推理业务迁移至昇腾的通用指导
对话问答、数学推理、代码生成、翻译 中文、英文 Llama2 文本生成 对话问答、智能创作、文本摘要 英文 Llama3 文本生成 对话问答、智能创作、文本摘要 英文 Llama3.1 文本生成 对话问答、智能创作、文本摘要 英文 Yi 文本生成 代码生成、数学推理、对话问答 中文、英文
支持大小模型投机推理和eager模式投机,提升推理性能。 图模式 Cuda-graph/cann-graph 记录算子执行的依赖关系构图;消除python host耗时;且支持动态shape。 Torch.compile Torch.dynamo构图,转ascend-GE后端推理;使用静态分档。
moondream2基于DevServer适配PyTorch NPU推理指导 文生图模型 ModelArts针对以下主流的AIGC文生图模型进行了基于昇腾NPU的适配工作,可以直接使用适配过的模型在NPU上进行推理或训练。 表5 文生图模型 模型名称 应用场景 软件技术栈 指导文档 Stable Diffusion(SD)
visible_device_list = '0' with tf.Session(graph=tf.Graph(), config=config) as sess: meta_graph_def = tf.saved_model.loader.load(
每个样本由多少人标注,最少为1。 synchronize_auto_labeling_data 否 Boolean 是否同步更新智能标注数据。可选值如下: true:同步更新智能标注数据 false:不同步更新智能标注数据 synchronize_data 否 Boolean 是否同步更新:如上传文件、同步数据
标注图像分类数据 由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。通过ModelArts您可对图片进行一键式批量添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 请确保数据集中已标注的图片不低于100张,否
击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
5基于DevServer适配PyTorch NPU的推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 本文基于diffusers和comfyui两个框架进行适配。 方案概览 本方案介绍了在ModelArts Lite
delArts后台通过指标正则表达式获取搜索指标参数,朝指定的优化方向进行超参优化。用户需要在代码中打印搜索参数并在控制台配置以下参数。 图1 设置算法搜索功能 搜索指标 搜索指标为目标函数的值,通常可以设置为loss、accuracy等。通过优化搜索指标的目标值超优化方向收敛,
Gallery百模千态社区,为用户提供优质的昇腾云AI模型开发体验和丰富的社区资源。 适用于AI开发探索。 产品架构 ModelArts产品架构请参考图1。 图1 ModelArts产品架构 算力层提供全系列昇腾硬件,万卡级大规模集群管理能力,提供资源负载调度管理能力,兼容业界主流AI开发调试、训练推理框架。
devid = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid) 父主题: Standard Notebook
ta-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标注对象和标注文件存储
which does not exist. The operation, 'images', does not exist in the graph。 处理方法 如果切分了数据集,需要删除推理代码中“Yolov3Service”类中的如下代码: self.model_inputs =
oe_unet_graph.mindir --device=Ascend --numThreads=1 --parallelNum=1 --workersNum=1 --warmUpLoopCount=100 --loopCount=100 图1 调优前模型 图2 调优后模型 A
dataset_tags Array of strings 数据集关键标识列表,例如:["图片","物体检测"]。 dataset_type Integer 数据集类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组 200:声音分类
p_l.safetensors, 如下图。 图9 选择clip模型 选择vae模型,如下图。 图10 选择vae模型 配置推理的参数,如width、height、batch_size等,本文以 688*1024,25步为例,如下图所示。 图11 配置推理参数 单击Queue Prompt加入推理队列进行推理,如下图
在ModelArts数据集中添加图片对图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。
单击“创建项目”,图像分类项目创建成功后页面自动跳转到“自动学习工作流”。 图像分类项目的工作流,将依次运行如下节点: 数据标注:对您的数据标注情况进行确认。 数据集版本发布:将已完成标注的数据进行版本发布。 数据校验:对您的数据集的数据进行校验,是否存在数据异常。 图像分类:将发布