检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
鼠标移动至节点名称上,复制需要退订的实例ID。 图3 复制实例ID Server购买订单里绑定的资源ID为Server ID,与Server产品所封装的BMS/ECS ID不同,若要退订Server,需要在ModelArts控制台的“资源管理 > AI专属资源池 > 弹性节点Server”中查询对应ID。
build_from_file("./model.mindir", mslite.ModelType.MINDIR, context) # 输入数据到Device侧,针对于多输入场景可以通过list来指定输入。 in_data = [np.array(data1), np.array(data2)]
运行的作业可以访问打通网络中的存储和资源。例如,在创建训练作业时选择打通了网络的专属资源池,训练作业创建成功后,支持在训练时访问SFS中的数据。 专属资源池支持自定义物理节点运行环境相关的能力,例如GPU/Ascend驱动的自助升级,而公共资源池暂不支持。 专属资源池有什么能力?
类推,重新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
the threshold has been reached. Please try again later. 触发了限流,请稍后重试。 异常 发送构建镜像请求失败。 Failed to send image building request. 请联系技术支持。 异常 共享源镜像失败。
l-len,推荐使用4096或8192。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。如果不指定,则根据输入数据自动匹配数据类型。使用不同的dtype会影响模型精度。如果使用开源权重,建议不指定
msprobe精度比对 精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问
user-job-dir/code/train.py 方式三:设置PATH环境变量。 您可以将指定的“conda env bin”目录配置到PATH环境变量中。您可以使用Python命令启动训练脚本。启动命令示例如下: export PATH=/home/ma-user/anaconda3/envs/python-3
下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
通过pip安装msprobe工具。 # shell pip install mindstudio-probe 获取NPU和GPU的dump数据。 PyTorch训练脚本插入dump接口方式如下: from msprobe.pytorch import PrecisionDebugger
Integer 不分页的情况下,符合查询条件的总模型数量。 count Integer 模型数量。 models model结构数组 模型元数据信息。 表3 model结构 参数 参数类型 描述 model_id String 模型ID。 model_name String 模型名称。
下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
在创建训练作业时,设置训练“输出”参数为“train_url”,在指定的训练输出的数据存储位置中保存Checkpoint,且“预下载至本地目录”选择“下载”。选择预下载至本地目录时,系统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。 图1 训练输出设置
spark)。 _preprocess(self, data) 预处理方法,在推理请求前调用,用于将API接口输入的用户原始请求数据转换为模型期望输入数据。 _inference(self, data) 实际推理请求方法(不建议重写,重写后会覆盖ModelArts内置的推理过程,运行自定义的推理逻辑)。
version_count Long 训练作业的版本数。 请求示例 如下以查询训练作业状态为7,每页展示10条记录,指定到第1页,按照“job_name”排序并递增排列,查询作业名字中包含job的所有训练作业数据为例。 GET https://endpoint/v1/{project_id}/training-jobs
类推,重新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
类推,重新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
类推,重新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model