检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。
处理方法 在代码中打印出numpy的版本,查看是否为1.18.5版本,若非该版本号则在代码开始处执行: import os os.system('pip install numpy==1.18.5') 如果依旧有报错情况,将以上代码修改为: import os os.system(
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig import os os.environ['CURL_CA_BUNDLE
针对不同的数据量和算法情况,推荐以下训练方案: 单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案使用“OBS的并行文件系统(存放数据和代码)”。
镜像保存成功后,实例状态变为“运行中”,用户可在“镜像管理”页面查看到该镜像详情。 单击镜像的名称,进入镜像详情页,可以查看镜像版本/ID,状态,资源类型,镜像大小,SWR地址等。
基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 评估结果说明 根据训练数据类的不同评估结果会包含不同的指标。
图6 Clone仓库失败 如果克隆时遇到Notebook当前目录下已有该仓库,系统给出提示仓库名称重复,此时可以单击“覆盖”继续克隆仓库,也可以单击取消。 父主题: 上传文件至JupyterLab
import os os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # 默认的显示等级,显示所有信息 os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示warning和Error os.environ
在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env | grep RANK 在训练作业中,您可以在训练启动脚本的首行加入如下代码,把RANK_TABLE_FILE的值打印出来: 1 os.system('env | grep
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。
宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 shm-size:共享内存大小。
处理方法 建议直接根据系统分卡情况下传进去的CUDA_VISIBLE_DEVICES去设置,不用手动指定默认的。 如果发现资源节点中存在GPU卡损坏,请联系技术支持处理。
import os os.environ['PS_VERBOSE'] = '2' os.environ['PS_RESEND'] = '1' 其中,“os.environ['PS_VERBOSE'] = '2'”为打印所有的通信信息。
购买操作如下: 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts Studio”进入ModelArts Studio大模型即服务平台。 在ModelArts Studio首页单击“购买套餐包”,进入购买页面。
登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts Studio”进入ModelArts Studio大模型即服务平台。 在ModelArts Studio左侧导航栏中,选择“模型部署”进入服务列表。
针对不同的数据量和算法情况,推荐以下训练方案: 单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案推荐使用“OBS的并行文件系统(存放数据和代码)”。
宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 shm-size:共享内存大小。
import os os.system("pip uninstall -y numpy") os.system('rm -rf /home/work/anaconda/lib/python3.6/site-packages/numpy/') os.system("pip install
这意味着数据可以直接在多个GPU之间传输,而无需经过CPU或系统内存,这可以显著降低延迟并提高带宽。 所以既然nccl-tests能正常测试, 但是达不到预期,可能是nv_peer_mem异常。 处理方法 查看nv_peer_mem是否已安装。
所有中国大陆境内下沉POD区的服务均遵守国家《互联网信息服务管理办法》要求。 父主题: 安全