检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的
据(如文本语料库、百科文章),这些数据覆盖广泛的领域和语言表达方式,帮助模型掌握广泛的知识。 适合广泛应用:经过预训练后,模型可以理解自然语言并具备通用任务的基础能力,但还没有针对特定的业务场景进行优化。预训练后的模型主要用于多个任务的底层支持。 通过使用海量的互联网文本语料对模
多层级分类示例-声音分类 文本描述:如图3,文本描述允许标注者以文字的形式为视频片段提供更详细的说明或描述。该描述不仅可以包含视频中的内容信息,还可以包括视频中的场景、动作、事件或其他细节。这种方式不局限于预设的分类标签,能够灵活地记录视频中一些更复杂的内容。 图3 文本描述示例-视频片段描述
使用API调用NLP大模型 预置模型或训练后的模型部署成功后,可以使用“文本对话”API实现模型调用。 表1 NLP大模型API清单 API分类 API访问路径(URI) 文本对话 /v1/{project_id}/deployments/{deployment_id}/chat/completions
功能类型 使用限制 数据工程-数据格式要求 ModelArts Studio平台支持接入的数据需要满足格式要求,包括文件格式、单个文件大小、所有文本大小以及文件数量等,请参考《用户指南》“使用数据工程构建数据集 > 数据集格式要求”。 模型开发-训练、评测最小数据量要求 使用ModelArts
的方式快速搭建一个工作流,创建一个应用。 Agent开发平台应用场景 当前,基于Agent开发平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。
盘古大模型是否可以自定义人设 大模型支持设置人设,在用户调用文本对话(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。 以下示例要求模型以幼儿园老师的风格回答问题: { "messages": [
保证微调数据能覆盖对应任务所涉及的所有场景。 微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为
通过快速入门引导,您将快速熟悉平台的核心能力,探索多种应用场景,从而更好地发挥盘古大模型在实际业务中的价值。 快速入门 使用盘古预置NLP大模型进行文本对话 使用盘古应用百宝箱生成创意活动方案 使用盘古NLP大模型创建Python编码助手应用 05 实践 通过基模型训练出行业大模型和提示词
提取图文压缩包中的JSON文本和图片,并对图片进行结构化解析(BASE64编码)。 数据过滤 图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通
能够满足不同场景的需求。通过灵活的API接口,模型可以无缝集成到各类应用中。 模型调用:在模型部署后,用户可以通过模型调用功能快速访问模型的服务。平台提供了高效的API接口,确保用户能够方便地将模型嵌入到自己的应用中,实现智能对话、文本生成等功能。 父主题: 产品功能
采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、关键词、简介等结构化信息,可以将有监督的问题设置为“请根据标题xxx/关键性xxx/简介xxx,生成一段不少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。
Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的其他类型数据。平台提供灵活的数据接入方式以及支持多种文件格式导入,确保不同业务场景下的数据获取需求得到满足。 数据清洗:平台提供强大的数据清洗功能,可以对文本、视频、图片、气象类型的数据进行数据提
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,平台还支持导入其他类数据集,即用户训练模型时使用的自定义数据集。 其他类数据集支持发布其他类数据集操作,不支持数据加工操作。 其他类数据集要求单个文件大小不超过50GB,单个压缩包大小不超过50GB,文件数量最多1000个。
见场景,以及对应的调参指导,供您参考: 文本生成:对于文本生成场景(宣传文案生成、信稿文本生成、文学创作等),通常希望生成的文本有一点的多样性,建议在保证不过于随机的基础上,增大“温度”或“核采样”的值(二者选其一调整)。若发现生成的文本过于发散,可以降低“话题重复度控制”的值,
支持数据加工的数据集类型 当前支持数据加工操作的数据集类型见表1。 表1 支持数据加工操作的数据集类型 数据类型 数据清洗 数据合成 数据标注 文本类 √ √ √ 图片类 √ - √ 视频类 √ - √ 气象类 √ - - 父主题: 加工数据集
等操作。 平台支持发布的数据集格式为默认格式、盘古格式。 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要发布为该格式。当前仅文本类、图片类数据集支持发布为盘古格式。 流通图片类数据集、流通视频类数据集 父主题: 开发盘古CV大模型
盘古NLP大模型能力与规格 盘古NLP大模型是业界首个超千亿参数的中文预训练大模型,结合了大数据预训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意
tar包对应一个jsonl文件,文件内容中每一行代表一段文本,形式为: {"image_name":"图片名称(abc.jpg)","tar_name":"tar包名称(1.tar)","caption":"图片对应的文本描述"} 单个文件大小不超过50GB,单个压缩包大小不超过50GB,文件数量最多1000个。
单个图片类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 创建文本类数据集流通任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程