检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
级的运行情况指导和操作,提升观测和调试效率。 Agent开发平台应用场景 当前,基于Agent平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。
手工编排Agent应用 手工编排Agent应用流程 配置Prompt builder 配置插件 配置知识 配置开场白和推荐问题 调试Agent应用 父主题: 开发盘古大模型Agent应用
保证微调数据能覆盖对应任务所涉及的所有场景。 微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为
提取图文压缩包中的JSON文本和图片,并对图片进行结构化解析(BASE64编码)。 数据过滤 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。
积达到核采样值。核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性,取值范围0-1。 建议不要与温度同时调整。 父主题: 手工编排Agent应用
数据内容 数据文件格式要求 文本类 文档 支持txt、mobi、epub、docx、pdf,详见文本类数据集格式要求。 网页 支持html,详见文本类数据集格式要求。 预训练文本 支持jsonl,详见文本类数据集格式要求。 单轮问答 支持jsonl、csv,详见文本类数据集格式要求。 单轮问答(人设)
选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标注任务可选择是否启用标注审核,可设置多人审核,详见审核文本类数据集标注结果。审核要求可以选择以下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“
多种数据格式支持:对于文本类、图片类数据集,平台支持多种数据发布格式,包括“默认格式”、“盘古格式”和“自定义格式”,以满足不同训练任务的需求。通过这些格式的转换,用户可以确保数据与特定模型(如盘古大模型)兼容,并优化训练效果。 灵活的定制化服务:对于文本类、图片类数据集,用户自
采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、关键词、简介等结构化信息,可以将有监督的问题设置为“请根据标题xxx/关键性xxx/简介xxx,生成一段不少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。
选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标注任务可选择是否启用标注审核,可设置多人审核,详见审核文本类数据集标注结果。审核要求可以选择以下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“
使用API调用NLP大模型 模型部署成功后,可以通过“文本对话”API调用NLP大模型。 表1 NLP大模型API清单 API分类 API访问路径(URI) 文本对话 /v1/{project_id}/deployments/{deployment_id}/chat/completions
数据名称需包含train字眼,如train01.csv;验证数据名称需包含eval字眼;测试数据名称需包含test字眼。文件的命名不能同时包含train、eval和test中的两个或三个。 时序预测必须要包含一个时间列,时间列值的格式示例为 2024-05-27 或 2024/05/27
Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单 API 功能 操作指导 NLP大模型-文本对话 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 文本对话 科学计算大模型-气象/降水模型 支持创建推理作业并查询推理作业详情。 气象/降水模型 科学计算大模型-海洋模型
见场景,以及对应的调参指导,供您参考: 文本生成:对于文本生成场景(宣传文案生成、信稿文本生成、文学创作等),通常希望生成的文本有一点的多样性,建议在保证不过于随机的基础上,增大“温度”或“核采样”的值(二者选其一调整)。若发现生成的文本过于发散,可以降低“话题重复度控制”的值,
盘古NLP大模型能力与规格 盘古NLP大模型是业界首个超千亿参数的中文预训练大模型,结合了大数据预训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意
NLP大模型 文本对话 父主题: API
用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的其他类型数据。平台提供灵活的数据接入方式,确保不同业务场景下的数据获取需求得到满足。 数据加工
数据集加工算子介绍 文本类加工算子能力清单 视频类加工算子能力清单 图片类加工算子能力清单 气象类加工算子能力清单 父主题: 加工数据集
评估数据集 数据集评估场景介绍 评估文本类数据集 评估视频类数据集 评估图片类数据集 父主题: 使用数据工程准备与处理数据集
需进行数据集格式转换。 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要进行数据集格式转换。当前仅文本类、图片类数据集支持转换为盘古格式。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。 父主题: 使用数据工程准备与处理数据集