检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev
2K上下文能力。 NLP大模型训练过程中,一般使用token来描述模型可以处理的文本长度。token(令牌)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。不同系列模型在读取中
入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或回答的问题。如:“写一篇关于勇士的小说”、“天空为什么是蓝色的?” 说明:对任务要求的补充说明。如:“有冒险、友情等元素”、“生成文本少于200字” 上下文:提供角色、示例、外部信息等,供大模型参考。
流畅的对话和交流。 通用文本(文本补全)(/text/completions) Java、Python、Go、.NET、NodeJs 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。
提示词调优支持对提示词文本的编辑、提示词变量设置、提示词结果生成和调优历史记录管理。 提示词候选 提示词候选支持用户对调优后初步筛选的提示词进行候选管理,每个工程任务下可以保存上限9个候选提示词,进一步基于候选提示词进行比较和评估。 提示词比较 提示词比较支持选择两个候选提示词对其文本和参数进
基本概念 训练相关概念 表1 训练相关概念说明 概念名 说明 Token 令牌(Token)是指模型处理和生成文本的基本单位。Token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成Token,然后根据模型的概率分布进行采样或者计算。 例如,在英文中,有些组合单词会根据语义
开通API 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如让模型依据要求写邮件、做摘要总结、生成观点见解等。 多轮对话
embedding_api = Embeddings.of("css") embedding单文本:把单个字符串转换为向量数据。(向量维度由模型确定)。 text = "this is a test text." # embed query. embedding = embedding_api
为什么微调后的模型,评估结果很好,但实际场景表现却很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景
mperature来调整生成文本的倾向性,但不要同时更改这两个参数。 取值范围:(0, 1] 缺省值:N1模型为0.7、N2模型为1,N4模型为0.85 max_tokens 否 Integer 生成文本的最大token数量。 输入的文本加上生成的文本总量不能超过模型所能处理的最大长度。
TXT、JSONL、PDF、WORD、HTML 编码格式为UTF-8。 #TXT格式,一行对应1条JSON #PDF、WORD、HTML只需上传对应的文档,文档内容为文本 #JSONL {"text":"《活着》,是中国著名作家余华所写的一部长篇小说。《活着》讲述了一个普通农民徐福贵的人生历程。他的人生充满
of(Embeddings.CSS); embedding单文本:把单个字符串转换为向量数据。(向量维度由模型确定)。 import java.util.List; String text = "this is a test text."; // embed query. List<Float>
推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的
保证微调数据能覆盖对应任务所涉及的所有场景。 微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为
配置AI助手工具 各种功能的API经封装后,将形成一个个工具,AI助手通过大模型来调用不同的工具,实现相应的功能。在创建AI助手前,需要将使用的功能封装为工具。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理
Optional[float] # 频率惩罚,降低模型重复的可能性,提高文本的多样性、创新性(从参数盘古大模型暂不支持) stream: Optional[bool] # 是否开启流式调用 流式问答(只适用于ask接口):模型问答,开启流式效果,响应消息流式打印。 import
LLMs(语言模型) LLMs模块用于对大语言模型API的适配封装,提供统一的接口快速地调用盘古、开源模型等模型API。 初始化:根据相应模型定义LLM类。例如,使用盘古LLM为: LLMs.of(LLMs.PANGU)。 import com.huaweicloud.pangu
点符号、大中小。 文本长度过滤 过滤文本长度超出指定范围的内容。 乱码文本 过滤乱码字符占比超过阈值的文本。 汉字比率过滤 基于文档中汉字占比过滤数据。 目录\封面过滤 移除文本的目录和封面。 图注标注过滤 移除文本中的图标和标注信息。 参考文献过滤 移除文本中参考文献的信息。 数据去重
name、project id 打开Postman,新建一个POST请求,并输入“西南-贵阳一”区域的“获取Token”接口。并填写请求Header参数。 接口地址:https://iam.cn-southwest-2.myhuaweicloud.com/v3/auth/tokens
练。 需要进行模型的综合训练时,会组合多样的数据集,以提升模型处理不同类型数据的能力。例如,通过组合数据集,NLP模型在训练后可以同时具备文本生成、情感分析等多种能力。 在准备自监督训练数据和有监督微调数据时,除行业数据外,建议混入一定比例的通用数据,防止模型在经过训练后出现通用问答能力下降的情况。