检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开发环境的Notebook,根据不同的工作环境,对应支持的镜像和版本有所不同。 表3 Notebook支持的镜像 镜像名称 镜像描述 适配芯片 支持SSH远程开发访问 支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1
true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。
搜索指标的名称。需要与您在代码中打印的搜索指标参数保持一致。 优化方向 可选“最大化”或者“最小化”。 指标正则 填入正则表达式。您可以单击智能生成功能自动获取正则表达式。 设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
# 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true # 保持不动,pod间互相通信使用及生成一些必要环境变量 maxRetry:
会首先下载模型文件到/home/ma-user/.cache目录下,然后启动推理步骤。 图1 启动脚本 运行结束后,可以看到当前目录下生成了对应尺寸的图像。 图2 推理生成的图像 步骤四 Diffusers使能多实例共享权重功能 进入AIGC插件解压路径,安装昇腾云torch插件。 pip install
开发环境的Notebook,根据不同的工作环境,对应支持的镜像和版本有所不同。 表3 新版Notebook支持的镜像 镜像名称 镜像描述 适配芯片 支持SSH远程开发访问 支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1
<NNODES=1> <NODE_RANK=0> sh scripts/llama2/0_pl_sft_13b.sh localhost 1 0 训练完成后,生成的权重文件保存路径为:/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/。
}/{eval_dataset}-{timestamp} 的目录结果保存到对应的测试工程。执行多少次,则会在{service_name}下生成多少次结果。 单独的评测结果如下: {eval_dataset}-{timestamp} # 例如: mmlu-20240205093257
<NODE_RANK=0> sh scripts/llama2/0_pl_lora_13b.sh localhost 1 0 训练完成后,生成的权重文件保存路径为:/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/。
“特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的人们来说是有价值、有意义的数据。“数据处理”又分为“数据校验”、“数据清洗”、“数据选择”和“数据增强”四类。 “数据校验”表示对数据集进行校验,保证数据合法。
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
pt模型文件 pt模型转onnx模型。以转换yolov8n.pt为例,执行如下命令,执行完会在当前目录生成yolov8n.onnx文件。 python pt2onnx.py --pt yolov8n.pt onnx模型转mindir格式,执行如下命令,转换完成后会生成yolov8n.mindir文件。
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/。
Tenant Administrator 可选 CES云监控 授予子用户使用CES云监控服务的权限。通过CES云监控可以查看ModelArts的在线服务和对应模型负载运行状态的整体情况,并设置监控告警。 CES FullAccess 可选 SMN消息服务 授予子用户使用SMN消息服务的
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。