检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ma-cli ma-job训练作业支持的命令 使用ma-cli ma-job命令可以提交训练作业,查询训练作业日志、事件、使用的AI引擎、资源规格及停止训练作业等。 $ ma-cli ma-job -h Usage: ma-cli ma-job [OPTIONS] COMMAND
Step4 制作自定义镜像 Step5 上传镜像至SWR服务 Step6 在ModelArts上创建训练作业 前提条件 已注册华为账号并开通华为云,且在使用ModelArts前检查账号状态,账号不能处于欠费或冻结状态。 Step1 创建OBS桶和文件夹 在OBS服务中创建桶和文件夹,用
以PyTorch框架创建训练作业(新版训练) 本节通过调用一系列API,以训练模型为例介绍ModelArts API的使用流程。 概述 使用PyTorch框架创建训练作业的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调
Step4 制作自定义镜像 Step5 上传镜像至SWR服务 Step6 在ModelArts上创建训练作业 前提条件 已注册华为账号并开通华为云,且在使用ModelArts前检查账号状态,账号不能处于欠费或冻结状态。 Step1 创建OBS桶和文件夹 在OBS服务中创建桶和文件夹,用
自定义脚本代码示例 Tensorflow TensorFlow存在两种接口类型,keras接口和tf接口,其训练和保存模型的代码存在差异,但是推理代码编写方式一致。 训练模型(keras接口) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。
例。 图1 选择指标源 通过“全量指标”或“按普罗语句添加”方式选择一个或多个关注的指标。 图2 添加指标 关于更多指标浏览方法请参考华为云帮助中心“应用运维管理 AOM> 用户指南(2.0)> 指标浏览”。 ModelArts支持的指标和Label信息如下面表格所示: 表1 容器级别的指标