检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
区域选择“Resource Monitor”,展示“CPU使用率”和“内存使用率”。 图22 资源监控 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
ster”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
行历史。 图5 在Notebook Job Definitions页签单击任务名称 图6 设置定时任务 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
在开发环境中创建MindInsight可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动MindInsight Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间> Noteb
在开发环境中创建TensorBoard可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动TensorBoard Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间 > Note
推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型部署”页面部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。
删除服务存在如下两种删除方式。 根据部署在线服务生成的服务对象删除服务。 根据查询服务对象列表返回的服务对象删除服务。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象删除服务
上传OBS文件到JupyterLab 在Notebook的JupyterLab中,支持将OBS中的文件下载到Notebook。注意:文件大小不能超过10GB,否则会上传失败。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts
实时推理的部署及使用流程 在创建完模型后,可以将模型部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证方式、
上传本地文件至JupyterLab Notebook的JupyterLab中提供了多种方式上传文件。 上传文件要求 对于大小不超过100MB的文件直接上传,并展示文件大小、上传进度及速度等详细信息。 对于大小超过100MB不超过50GB的文件可以使用OBS中转,系统先将文件上传O
上传远端文件至JupyterLab 在Notebook的JupyterLab中,支持通过远端文件地址下载文件。 要求:远端文件的URL粘贴在浏览器的输入框中时,可以直接下载该文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts
克隆GitHub开源仓库文件到JupyterLab 在Notebook的JupyterLab中,支持从GitHub开源仓库Clone文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload Fil
Wav2Lip模型的输入为任意的一段视频和一段语音,输出为一段唇音同步的视频。 Wav2Lip的网络模型总体上分成三块:生成器、判别器和一个预训练好的唇音同步判别模型Pre-trained Lip-sync Expert。 生成器是基于encoder-decoder的网络结构,分别利用2个encoder(speech
tor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理模块提供的容器中运行,其环境规格(如CPU规格,GPU规格)由表3 predictor configs结构决定。 部署在线服务Predictor需要线上服务端根据A
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型管理 > 模型”页面中直接部署。 支持发布至市场 将产生的模型发布至AI
出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新部署在线服务。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取服务ID。 进入“部署上线>在线服务”页面,在服务列表中找到自动学习任务中部署的在线服务,自动学习部署的服务都是以“exeML-”开头的
结构如下: 表1 ModelStep 属性 描述 是否必填 数据类型 name 模型注册节点的名称。只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符,一个Workflow里的两个step名称不能重复 是 str inputs 模型注册节点的输入列表
LabelingStep 属性 描述 是否必填 数据类型 name 数据集标注节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 是 str inputs 数据集标注节点的输入列表
场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_