检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
知识库介绍 平台提供了知识库功能来管理和存储数据,支持为应用提供自定义数据,并与之进行互动。 知识库支持导入以下格式的本地文档: 文本文档数据。支持上传常见文本格式,包括:txt、doc、docx、pdf、ppt、pptx格式。 表格数据。
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。
例如,退订训练单元的包周期资源后,可重新订购训练单元的按需计费,即可完成切换。 父主题: 计费FAQ
训练参数 数据集 训练数据集。 自定义L1预训练模型目录 自定义预训练模型所在的OBS路径。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型进行训练,模型为用户与服务共建,详情请联系客服。
变量权重 变量权重 训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 资源配置 训练单元 选择训练模型所需的训练单元。 当前展示的完成本次训练所需要的最低训练单元要求。
变更计费模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。
产品优势 预置多,数据工程“易” ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。
训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但也需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。
压缩NLP大模型 模型在部署前,通过模型压缩可以降低推理显存占用,节省推理资源提高推理性能。 当前仅支持对NLP大模型进行压缩。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。 模型评测:为了确保模型的实际应用效果,平台提供了多维度的模型评测功能。
"target": "是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。
计费项 盘古大模型的计费项由模型订阅、数据资源、训练资源和推理资源费用组成。了解每种计费项的详细信息,请参考计费项。 续费 包周期资源到期后,如果您想继续使用服务,需要在保留期内进行手动续费,否则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。
如何判断任务场景应通过调整提示词还是场景微调解决 在选择是否通过调整提示词或场景微调来解决任务时,需要从以下两个主要方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。
训练NLP大模型 压缩NLP大模型 通过模型压缩可以降低推理显存占用,节省推理资源提高推理性能。 压缩NLP大模型 部署NLP大模型 将模型部署用于后续模型的调用操作。 部署NLP大模型 评测NLP大模型 评测NLP大模型的效果。
配置服务访问授权 配置OBS访问授权 ModelArts Studio大模型开发平台使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。
LoRA(Low-Rank Adaptation)微调方法通过调整模型的少量参数,以低资源实现较优结果,适合聚焦于领域通用任务或小样本数据情境。例如,在针对通用客服问答的场景中,样本量少且任务场景广泛,选择LoRA微调既能节省资源,又能获得较好的效果。
油气行业:进行储层参数预测,例如预测储层的物理参数,如孔隙度、渗透率等,提高油气资源的开发利用效率。进行产能分级预测,例如预测油井的产能等级,优化油气生产计划。 电力行业:进行电力负荷预测,例如根据历史负荷数据,预测未来的电力负荷,优化电力生产和调度。
盘古CV大模型能力与规格 盘古CV大模型基于海量图像、视频数据和盘古独特技术构筑的视觉基础模型,赋能行业客户利用少量场景数据对模型微调即可实现特定场景任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的CV大模型,以满足不同场景和需求。
盘古科学计算大模型能力与规格 盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。