检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据资源目录管理 数据资源目录是以树型结构管理和展现的包括数据库、大数据、Web服务和文件等资源在内的注册信息。数据资源目录管理包括节点管理、数据库资源管理、大数据管理、接口服务管理、业务分类管理等。 数据管理员登录数据服务共享平台,对资资源目录进行配置管理。
数据目录支持采集哪些对象的资产?
节点的可用资源如何查询? 查询节点的可用资源 云平台提供的云监控,可以对节点运行状态进行日常监控。您可以通过管理控制台,直观地查看节点的各项监控指标。 由于监控数据的获取与传输会花费一定时间,因此,云监控显示的是当前时间5~10分钟前的节点状态。
横向联邦训练作业对接MA 前提条件 MA Lite资源池已创建完毕。 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择存储方式和数据目录,参考4.1 部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。
创建数据集 通过数据集,用户可获取到名下详细的资源列表。同时,对于有敏感信息的数据集,还可以单独设置隐私策略,并在发布到空间侧后对其他参与方生效,限制敏感信息的使用,保障数据安全。 创建结构化数据集 创建数据集前需存在已创建好的连接器,参考创建连接器。 用户登录TICS控制台。
使用场景 连接器使用场景:参与方的数据信息分布在不同的资源服务上,即可通过连接器管理功能来快速连接到名下的各类资源服务。 数据创建使用场景:参与方加入空间后,需要提供自己的数据集信息,用户即可通过数据创建功能,获取到名下详细的资源列表。
上传包含数据集iris2.csv的dataset文件夹到宿主机目录下,修改属主。
数据预处理作业选择的结构化数据集(包括CSV文件或目录数据集),需要在创建数据集时定义字段的分布类型。 训练数据预处理作业 用户登录TICS控制台。 进入TICS控制台后,单击页面左侧“计算节点管理”,进入计算节点管理页面。
空间成员完成计算节点部署,配置参数时选择存储方式和数据目录,参考部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在数据目录中完成数据发布,参考发布数据。
数据准备 数据准备 以下数据和表结构是根据场景进行模拟的数据,并非真实数据。 以下数据需要提前存导入到MySQL\Hive\Oracle等用户所属数据源中,TICS本身不会持有这些数据,这些数据会通过用户购买的计算节点进行加密计算,保障数据安全。
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
图3 配置数据集参数 发布数据集。 图4 发布数据集 数据集发布的过程并不会直接从数据源中导出用户数据,仅从数据源处获取了数据集相关的元数据信息,用于任务的解析、验证等。 父主题: 测试步骤
创建数据 数据拥有方公司A创建和发布数据集。可供选择有两种数据资产类型:结构化数据集、非结构化数据集。创建数据集后,发布数据集,此时对空间内的所有代理可见。 父主题: 可信数据交换场景
管理数据 数据管理概述 创建连接器 创建数据集 发布数据 数据预处理 父主题: 计算节点管理
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,例如双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集。
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。
图2 前往计算节点 在“数据管理”页签找到待发布的数据名称,单击“发布”,弹出发布数据集选择框。 图3 发布数据 在发布数据集选择框中选择需要发布的合作方,单击“发布”,数据就会被同步到对应合作方作业管理的数据集中。数据集创建者默认拥有数据集权限。
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。
购买Model Lite资源池 前提条件 已购买ModelArts服务。 操作步骤 以主账号登录ModelArts管理控制台。 在控制台左下方,单击“专属资源池”下拉框,选择“弹性集群”,进入资源池创建页面。 在资源池创建页面,单击“创建”,进入购买专属资源池页面。
数据优化 根据统计结果,双方可能会发现存在以下两个问题: 碰撞后的数据总数比较小。 碰撞后的数据分布不太均衡,负样本的比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。